2. Потери на отражение для одной линзы линзового лучевого волновода равны
Дб , (3.5)
где Г - коэффициент отражения по мощности.
3. Тепловые потери в линзе определяются в первую очередь величиной тангенса угла потерь tg исходного диэлектрика и его толщиной. Поскольку линза неравномерна по толщине, то поглощение в ней зависит еще и от распределения поля.
Величина тепловых потерь на одиночной линзе для волн ТЕМmn определяется следующим выражением:
Дб, (3.6)
где D0—максимальная толщина линзы.
4. Потери в среде всегда должны учитываться при построении субмиллиметровых линий передачи. Средой, в которой происходит распространение радиоволн при использовании квазиоптических методов, является, как правило, атмосферный воздух. Известно, что для волн с частотой ниже 1 Ггц атмосфера является практически прозрачной. Ослабление энергии весьма мало даже при большой протяженности линии передачи. На более высоких частотах сказываются два фактора:
- поглощение и рассеивание радиоволн на сосредоточенных объектах, присутствующих в воздухе;
- резонансное поглощение в атмосферных газах и парах воды.
5. Потери на возбуждение возникают в том случае, когда амплитудное и фазовое распределение волны, поступающей на вход лучевого волновода, отличается от распределения рабочей волны (первой собственной волны). Действительно, возбуждающее поле может быть разложено в ряд по собственным волнам регулярного лучевого волновода. Коэффициенты разложения будут представлять собой амплитуды возбуждаемых волн. Поскольку волны высших порядков при распространении в линии быстро затухают, энергия, затраченная на их возбуждение, теряется впустую.
4. Элементы трактов субмиллиметрового диапазона
В связи с изобретением и широким применением на практике лучевых волноводов возникла необходимость в разработке вспомогательных устройств, позволяющих управлять канализируемой энергией электромагнитных волн. В СВЧ диапазоне используются различные волноводные элементы: тройники, двойные тройники, направленные ответвители, аттенюаторы, делители мощности, согласованные поглощающие нагрузки, различного вида согласующие устройства и т. д.
Как и в обычных металлических волноводных линиях, связь генератора или передающей квазиоптической линии с измерительными приборами различного назначения осуществляется с помощью направленного ответвителя. Основное назначение этого устройства - ответвить некоторую часть энергии электромагнитных колебаний, проходящей по линии передачи в прямом или обратном направлении. Кроме этого он может использоваться как постоянный или переменный аттенюатор при измерении больших уровней энергии, в измерителях проходящей мощности, измерителях коэффициента стоячей волны, для связи индикаторов или спектральных приборов, контролирующих работу линии при настройке, и т. д.
4.1 Направленные ответвители
Рассмотрим различные варианты построения направленных ответвителей.
Если электромагнитная волна падает под углом 45° на проволочную решетку или диэлектрическую пластину, то ее энергия делится на две части: одна часть проходит прямо, а другая отражается под прямым углом к направлению пришедшей волны. Величина ответвленной энергии зависит от коэффициентов пропускания и отражения полупрозрачной пластины. В случае применения проволочной решетки коэффициент отражения зависит от густоты расположения проволок, точнее от отношения шага к длине волны облучающего сигнала. По мере укорочения длины волны или при увеличениишага решетки коэффициент отражения уменьшается.
Заметим, что коэффициент отражения делителя с решеткой зависит от поляризации волны. Благодаря этому имеется возможность изменять величину отражения. Если угол между направлением вектора Е и проволочками равен , то коэффициент отражения
г' = г sin. (4.1)
Коэффициент отражения тонкой диэлектрической пластинки, как известно, определяется величиной диэлектрической проницаемости материала. Для пластины, расположенной под углом 45° к направлению распространения электромагнитной волны, он может быть найден из соотношения:
. (4.2)
Если один диэлектрик расположен вблизи другого, как, например, в случае двух призм, то, как было замечено Бозе, происходит переход энергии из одной призмы в другую. Изменяя расстояние между призмами, можно получить отношение переданной и отраженной энергии электромагнитной волны от нуля до очень большой величины.
Квазиоптический призменный направленный ответвитель характеризуется теми же параметрами, что и волноводный: переходным затуханием, направленностью и диапазоном рабочих частот.
Направленность ответвителя характеризует отношение мощностей электромагнитных волн, распространяющихся в побочном плече в противоположных направлениях при бегущей волне в основной линии. Эта величина выражается в децибелах и может быть найдена как:
. (4.3)
Направленность квазиоптического ответвителя зависит от толщины воздушного зазора между призмами и рабочей частоты. Она может изменяться в широких пределах.
Рабочий диапазон призменного устройства весьма широк. С увеличением частоты он ограничивается допусками на обработку поверхности призм и требованиями к механизму перемещения. Ограничение со стороны длинных волн обычно обусловлено конструктивными элементами. Действительно, при увеличении длины волны сигнала, с одной стороны, оказывается необходимым увеличить размеры призм из-за расширения волнового пучка, с другой стороны, для достижения тех же характеристик потребуется увеличить воздушный зазор между призмами, а механизм перемещения имеет ограниченные возможности.
0 комментариев