Потери на отражение для одной линзы линзового лучевого волновода равны

117222
знака
0
таблиц
10
изображений

2. Потери на отражение для одной линзы линзового лучевого волновода равны

Дб , (3.5)

где Г - коэффициент отражения по мощности.

3. Тепловые потери в линзе определяются в первую очередь величиной тангенса угла потерь tg исходного диэлектрика и его толщиной. Поскольку линза неравномерна по толщине, то поглощение в ней зависит еще и от распределения поля.

Величина тепловых потерь на одиночной линзе для волн ТЕМmn определяется следующим выражением:

Дб, (3.6)

где D0—максимальная толщина линзы.

4. Потери в среде всегда должны учитываться при построении субмиллиметровых линий передачи. Средой, в которой происходит распространение радиоволн при использовании квазиоптических методов, является, как правило, атмосферный воздух. Известно, что для волн с частотой ниже 1 Ггц атмосфера является практически прозрачной. Ослабление энергии весьма мало даже при большой протяженности линии передачи. На более высоких частотах сказываются два фактора:

- поглощение и рассеивание радиоволн на сосредоточенных объектах, присутствующих в воздухе;

- резонансное поглощение в атмосферных газах и парах воды.

5. Потери на возбуждение возникают в том случае, когда амплитудное и фазовое распределение волны, поступающей на вход лучевого волновода, отличается от распределения рабочей волны (первой собственной волны). Действительно, возбуждающее поле может быть разложено в ряд по собственным волнам регулярного лучевого волновода. Коэффициенты разложения будут представлять собой амплитуды возбуждаемых волн. Поскольку волны высших порядков при распространении в линии быстро затухают, энергия, затраченная на их возбуждение, теряется впустую.


4. Элементы трактов субмиллиметрового диапазона

В связи с изобретением и широким применением на практике лучевых волноводов возникла необходимость в разработке вспомогательных устройств, позволяющих управлять канализируемой энергией электромагнитных волн. В СВЧ диапазоне используются различные волноводные элементы: тройники, двойные тройники, направленные ответвители, аттенюаторы, делители мощности, согласованные поглощающие нагрузки, различного вида согласующие устройства и т. д.

Как и в обычных металлических волноводных линиях, связь генератора или передающей квазиоптической линии с измерительными приборами различного назначения осуществляется с помощью направленного ответвителя. Основное назначение этого устройства - ответвить некоторую часть энергии электромагнитных колебаний, проходящей по линии передачи в прямом или обратном направлении. Кроме этого он может использоваться как постоянный или переменный аттенюатор при измерении больших уровней энергии, в измерителях проходящей мощности, измерителях коэффициента стоячей волны, для связи индикаторов или спектральных приборов, контролирующих работу линии при настройке, и т. д.

4.1 Направленные ответвители

Рассмотрим различные варианты построения направленных ответвителей.

Если электромагнитная волна падает под углом 45° на проволочную решетку или диэлектрическую пластину, то ее энергия делится на две части: одна часть проходит прямо, а другая отражается под прямым углом к направлению пришедшей волны. Величина ответвленной энергии зависит от коэффициентов пропускания и отражения полупрозрачной пластины. В случае применения проволочной решетки коэффициент отражения зависит от густоты расположения проволок, точнее от отношения шага к длине волны облучающего сигнала. По мере укорочения длины волны или при увеличениишага решетки коэффициент отражения уменьшается.

Заметим, что коэффициент отражения делителя с решеткой зависит от поляризации волны. Благодаря этому имеется возможность изменять величину отражения. Если угол между направлением вектора Е и проволочками равен , то коэффициент отражения

г' = г sin. (4.1)

Коэффициент отражения тонкой диэлектрической пластинки, как известно, определяется величиной диэлектрической проницаемости  материала. Для пластины, расположенной под углом 45° к направлению распространения электромагнитной волны, он может быть найден из соотношения:

. (4.2)

Если один диэлектрик расположен вблизи другого, как, например, в случае двух призм, то, как было замечено Бозе, происходит переход энергии из одной призмы в другую. Изменяя расстояние между призмами, можно получить отношение переданной и отраженной энергии электромагнитной волны от нуля до очень большой величины.

Квазиоптический призменный направленный ответвитель характеризуется теми же параметрами, что и волноводный: переходным затуханием, направленностью и диапазоном рабочих частот.

Направленность ответвителя характеризует отношение мощностей электромагнитных волн, распространяющихся в побочном плече в противоположных направлениях при бегущей волне в основной линии. Эта величина выражается в децибелах и может быть найдена как:

. (4.3)

Направленность квазиоптического ответвителя зависит от толщины воздушного зазора между призмами и рабочей частоты. Она может изменяться в широких пределах.

Рабочий диапазон призменного устройства весьма широк. С увеличением частоты он ограничивается допусками на обработку поверхности призм и требованиями к механизму перемещения. Ограничение со стороны длинных волн обычно обусловлено конструктивными элементами. Действительно, при увеличении длины волны сигнала, с одной стороны, оказывается необходимым увеличить размеры призм из-за расширения волнового пучка, с другой стороны, для достижения тех же характеристик потребуется увеличить воздушный зазор между призмами, а механизм перемещения имеет ограниченные возможности.


Информация о работе «Устройства генерирования и канализации субмиллиметровых волн»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 117222
Количество таблиц: 0
Количество изображений: 10

0 комментариев


Наверх