1.2 Линейный дискриминантный анализ

Выдвигаются предположения:

1)  имеются разные классы объектов;

2)  каждый класс имеет нормальную функцию плотности от k переменных

;

, (1.1)

rде µ (i) - вектор математических ожиданий переменных размерности k;

- ковариационная матрица при n=n;

- обратная матрица.

Матрица - положительно определена.

В случае если параметры известны дискриминацию можно провести следующим образом.

Имеются функции плотности  нормально pacпределенных классов. Задана точка х в пространстве k измерений. Предполагая, что имеет наибольшую плотность, необходимо отнести точку х к i-му классу. Существует доказательство, что если априорные вероятности для определяемых точек каждого класса одинаковы и потери при неправильной классификации i-й группы в качестве j-й не зависят от i и j, то решающая процедура минимизирует ожидаемые потери при неправильной классификации.

Ниже приведен пример оценки параметра многомерногo нормального pacпределения µ и Σ.

µ и Σ мoгyт быть оценены по выборочным данным: и  для классов. Задано l выборок  из некоторых классов. Математические ожидания  мoгyт быть оценены средними значениями

  (1.2)

Несмещенные оценки элементов ковариационной матрицы Σ есть

 (1.3)

Cледовательно, можно определить и по l выборкам в каждом классе при помощи (1.2), (1.3), получив оценки, точку х необходимо отнести к классу, для которой функция f(х) максимальна.

Необходимо ввести предположение, что все классы, среди которых должна проводиться дискриминация, имеют нормальное распределение с одной и той же ковариационной матрицей Σ.

В результате существенно упрощается выражение для дискриминантной функции.

Класс, к которому должна принадлежать точка х, можно определить на

основе неравенства

 (1.4)


Необходимо воспользоваться формулой (1.1) для случая, когда их ковариационные матрицы равны:, а ( есть вектор математических ожиданий класса i. Тогда (1.4) можно представить неравенством их квадратичных форм

 (1.5)

Если имеется два вектора Z и W, то скалярное произведение можно записать . В выражении (1.5) необходимо исключить справа и слева, поменять у всех членов суммы знаки. Теперь преобразовать

Аналогично проводятся преобразования по индексу i. Необходимо сократить правую и левую часть неравенства (1.5) на 2 и, используя запись квадратичных форм, получается

 (1.6)

Необходимо ввести обозначения в выражение (1.6):

Тогда выражение (1.6) примет вид


(1.7)

Следствие: проверяемая точка х относится к классу i, для которого линейная функция

 (1.8)

Преимущество метода линейной дискриминации Фишера заключается в линейности дискриминантной функции (1.8) и надежности оценок ковариационных матриц классов.

Пример

Имеются два класса с параметрами и . По выборкам из этих совокупностей объемом n1 n2 получены оценки  и . Первоначально проверяется гипотеза о том, что ковариационные матрицы  равны. В случае если оценки  и статистически неразличимы, то принимается, что  и строится общая оценка , основанная на суммарной выборке объемом n1+n2 , после чего строится линейная дискриминантная функция Фишера (1.8).



Информация о работе «Решение задач с нормальными законами в системе "Статистика"»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 24301
Количество таблиц: 8
Количество изображений: 7

Похожие работы

Скачать
159513
5
47

... период подготовки планов. Еще одна категория систем, используемых для бюджетирования - корпоративные системы управления (ERP-системы). ERP (Enterprise Resource Planning) - автоматизация и оптимизация внутренних бизнес-процессов, планирование как материальных, так и финансовых ресурсов в масштабе предприятия; - используется для описания компонентов "производство", "логистика", "финансы". ERP- ...

Скачать
9683
8
2

... критических точек распределения  ([1], стр. 465), по уровню значимости =0,05 и числу степеней свободы 8-3=5 находим Т.к. , экспериментальные данные не противоречат гипотезе и о нормальном распределении случайной величины . Для случайной величины : Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле , где  - объем выборки,  - шаг (разность между ...

Скачать
100095
5
2

... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1.  Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2.  ...

Скачать
117772
1
0

... взаимосвязи и взаимодействие подразделений с аналогичными функциями на разных уровнях единой организационной и управленческой структуры. Такая структура создает упорядоченность и организованность системы таможенных органов при выполнении возложенных на них функций. Рассмотрим современную организационную структуру таможенных органов. ГТК России имеет дифференцированную и разветвленную структуру. ...

0 комментариев


Наверх