3.2 Пример решения задачи дискриминантным анализом в системе STATISTICA

Исходя из данных по 10 странам (рис. 3.1), которые были выбраны и отнесены к соответствующим группам экспертным методом (по уровню медицинского обслуживания), необходимо по ряду показателей классифицировать еще две страны: Молдавия и Украина.

Исходными показателями послужили:

Х1 – Количество человек, приходящихся на одного врача;

Х2 – Смертность на 1000 человек;

Х3 – ВВП, рассчитанный по паритету покупательной способности на душу населения (млн. $);

Х4 – Расходы на здравоохранение на душу населения ($).

Уровень медицинского обслуживания стран подразделяется на:

- высокий;

- средний (удовлетворительный);

- низкий.

 

Кол-во чел. на 1 врача

Расх. на здрав.

ВВП

Смертность

Класс

Азербайджан

256 99 3000 9,6 низкий

Армения

198 152 3000 9,7 низкий

Белоруссия

222 157 7500 14 высокий

Грузия

182 152 4600 14,6 удовлетворительный

Казахстан

265 154 5000 10,6 удовлетворительный

Киргизия

301 118 2700 9,1 низкий

Россия

235 159 7700 13,9 высокий

Таджикистан

439 100 1140 8,6 низкий

Туркмения

320 125 4300 9 удовлетворительный

Узбекистан

299 116 2400 8 низкий

Рис. 3.1

Используя вкладку анализ, далее многомерный разведочный анализ, необходимо выбрать дискриминантный анализ. На экране появится панель модуля дискриминантный анализ, в котором вкладка переменные позволяет выбрать группирующую и независимые переменные. В данном случае группирующая переменная 5 (класс), а независимыми переменными выступят 1-4 (кол-во человек на 1 врача; расходы на здравоохранение; ВВП на душу населения; смертность).

В ходе вычислений системой получены результаты:

Вывод результатов показывает:

- число переменных в модели – 4;

- значение лямбды Уилкса – 0,0086739;

- приближенное значение F – статистики, связанной с лямбдой Уилкса – 9,737242;

- уровень значимости F – критерия для значения 9,737242.

Значение статистики Уилкса лежит в интервале [0,1]. Значения статистики Уилкса, лежащие около 0, свидетельствуют о хорошей дискриминации, а значения, лежащие около 1, свидетельствуют о плохой дискриминации. По данным показателя значение лямбды Уилкса, равного 0,0086739 и по значению F – критерия равного 9,737242, можно сделать вывод, что данная классификация корректная.

В качестве проверки корректности обучающих выборок необходимо посмотреть результаты матрицы классификации (рис. 3.2).

Матрица классификации . Строки: наблюдаемые классы Столбцы: предсказанные классы

 

Процент

низкий

высокий

удовлетв

низкий

100,0000 5 0 0

высокий

100,0000 0 2 0

удовлетв

100,0000 0 0 3

Всего

100,0000 5 2 3

Рис. 3.2

Из матрицы классификации можно сделать вывод, что объекты были правильно отнесены экспертным способом к выделенным группам. Если есть объекты, неправильно отнесенные к соответствующим группам, можно посмотреть классификацию наблюдений (рис.3.3).

Классификация наблюдений. Неправильные классификации отмечены *

 

Наблюд.

1

2

3

Азербайджан

низкий низкий удовлетв высокий

Армения

низкий низкий удовлетв высокий

Белоруссия

высокий высокий низкий удовлетв

Грузия

удовлетв удовлетв низкий высокий

Казахстан

удовлетв удовлетв низкий высокий

Киргизия

низкий низкий удовлетв высокий

Россия

высокий высокий низкий удовлетв

Таджикистан

низкий низкий удовлетв высокий

Туркмения

удовлетв удовлетв низкий высокий

Узбекистан

низкий низкий удовлетв высокий

Рис. 3.3

В таблице классификации наблюдений, некорректно отнесенные объекты помечаются звездочкой (*). Таким образом, задача получения корректных обучающих выборок состоит в том, чтобы исключить из обучающих выборок те объекты, которые по своим показателям не соответствуют большинству объектов, образующих однородную группу.

В результате проведенного анализа общий коэффициент корректности обучающих выборок должен быть равен 100% (рис. 3.2).

На основе полученных обучающих выборок можно проводить повторную классификацию тех объектов, которые не попали в обучающие выборки, и любых других объектов, подлежащих группировке.

Для этого необходимо в окне диалогового окна результаты анализа дискриминантных функций нажать кнопку функции классификации. Появится окно (рис. 3.4), из которого можно выписать классификационные функции для каждого класса.

Функции классификации

 

низкий

высокий

удовлетв

Кол-во чел на 1 врача

1,455 2,35 1,834

Расх на здрав

1,455 1,98 1,718

ВВП

0,116 0,20 0,153

Смертность

29,066 46,93 36,637

Конст-та

-576,414 -1526,02 -921,497

Рис. 3.4

Таблица 3

Классификационные функции для каждого класса

Низкий класс = -576,414+1,455*кол-во чел на 1 врача+1,455*расх на здра+0,116*ВВП+29,066*смертность
Высокий класс =-1526,02+2,35*кол-во чел на 1 врача+1,98*расх на здрав+0,20*ВВП+46,93*смертность
Удовлетворительный класс =-921,497+1,834*кол-во чел на 1 врача+1,718*расх на здра+0,153*ВВП+36,637*смертность

С помощью этих функций можно будет в дальнейшем классифицировать новые случаи. Новые случаи будут относиться к тому классу, для которого классифицированное значение будет максимальное.

Необходимо определить принадлежность стран Молдавия и Украина, подставив значения соответствующих показателей в формулы (Таблица 4).

Таблица 4

Страна Кол-во человек на 1 врача Расходы на здравоохранение ВВП на душу населения Смертность Высокий Низкий Удовлетворительный Класс
Молдавия 251 143 2500 12,6 438,29

653,09

628,64 Низкий
Украина 224 131 3850 16,4 880,23 863,39

904,27

Удовл.

ЗАКЛЮЧЕНИЕ

В данной курсовой работе был рассмотрен такой метод многомерного статистического анализа как дискриминантный. В дискриминантном анализе изучены: основные понятия, цели и задачи дискриминантного анализа. А также определение числа и вида дискриминирующих функций, и классификация объектов с помощью функции расстояния.

Для данного метода приведены примеры решения задач с использованием ППП STATISTICA.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

 

1. Баранова, Т.А. Многомерные статистические методы. Корреляционный анализ. [Текст]: Метод. указания / Иван. гос. хим.-технол. ун-т. / Т.А. Баранова. – Иваново, 9 - 40 с.

2. Буреева, Н.Н. Многомерный статистический анализ с использованием ППП “STATISTICA” [Текст] / Н.Н. Буреева. - Нижний Новгород, 2007. -112с.

3. Дубров, А.М. Многомерные статистические методы и основы эконометрики. [Текст]: Учебное пособие / А.М. Дубров. - М.: МЭСИ, 2008.- 79 с.

4. Калинина, В.Н. Введение в многомерный статистический анализ [Текст]: Учебное пособие / В.Н. Калинина.- ГУУ. – М., 2010. – 66 с.


Информация о работе «Решение задач с нормальными законами в системе "Статистика"»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 24301
Количество таблиц: 8
Количество изображений: 7

Похожие работы

Скачать
159513
5
47

... период подготовки планов. Еще одна категория систем, используемых для бюджетирования - корпоративные системы управления (ERP-системы). ERP (Enterprise Resource Planning) - автоматизация и оптимизация внутренних бизнес-процессов, планирование как материальных, так и финансовых ресурсов в масштабе предприятия; - используется для описания компонентов "производство", "логистика", "финансы". ERP- ...

Скачать
9683
8
2

... критических точек распределения  ([1], стр. 465), по уровню значимости =0,05 и числу степеней свободы 8-3=5 находим Т.к. , экспериментальные данные не противоречат гипотезе и о нормальном распределении случайной величины . Для случайной величины : Используя предполагаемый закон распределения, вычислим теоретические частоты по формуле , где  - объем выборки,  - шаг (разность между ...

Скачать
100095
5
2

... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1.  Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2.  ...

Скачать
117772
1
0

... взаимосвязи и взаимодействие подразделений с аналогичными функциями на разных уровнях единой организационной и управленческой структуры. Такая структура создает упорядоченность и организованность системы таможенных органов при выполнении возложенных на них функций. Рассмотрим современную организационную структуру таможенных органов. ГТК России имеет дифференцированную и разветвленную структуру. ...

0 комментариев


Наверх