3.  Имея корни полиномов – делителей g(x) можно найти их функции минимума, и следовательно найти g(x) .

4.   содержит корни g(x).

Таким образом, нахождение порождающего полинома по степеням его корней сводится к нахождению минимальных полиномов для элементов поля с соответствующей степенью.

,

где  минимальный полином.

2.1 Нахождение порождающего полинома по последовательности степеней корней

 

В таблице из приложения Г книги [1] содержатся параметры циклических кодов и последовательности степеней корней. Мы рассматриваем только коды тривиальной длины. Часть этой таблицы указана в приложении А данной работы. В таблице из приложения В книги [1] указаны неприводимые полиномы над GF(2). Укороченное представление такой таблицы также есть в приложении Б данной работы.

Алгоритм нахождения порождающего полинома:

1.  Исходя из длины выбранного кода, построить расширение  поля  по модулю неприводимого полинома над  степень которого равна m. Где m находится из следующего соотношения: .

2.  Для каждого корня построить циклотомический класс.

3.  Для каждого корня найти минимальный полином.

4.  Перемножить полученные минимальные полиномы по правилам для .

Рассмотрим каждый шаг более подробно на примере кода (15,5,7) . Для такого кода в таблице циклических кодов указаны следующие степени корней {1,3,5}.

Шаг 1. Построение .

Длина n заданного кода равна 15. Так как , m = 4. Будем строить . Так как m = 4, то из таблицы неприводимых полиномов выберем полином четвертой степени , по модулю которого будет построено . Как построить расширение поля, было рассмотрено в 1.4.3.

Таблица 3. .

Шаг 2. Построение циклотомических классов.

Последовательность степеней корней для данного кода - {1,3,5}. Для каждого элемента последовательности построим циклотомический класс, при помощи формулы . Подробно построение циклотомических классов описано в 1.4.4

Для корня со степенью 1 это {1,2,4,8}.

Для корня со степенью 3 это {3,6,9,12}.

Для корня со степенью 5 это {5,10}.

Шаг 3. Нахождение минимальных полиномов.

Исходя из теоремы 2, для каждого корня найдем его минимальный полином, подробно нахождение минимальных полиномов описано выше.

Для корня со степенью 1:

Для корня со степенью 3: m3(x) = (x – a3 ) (x – a6 ) (x – a9 ) (x – a12 ) = x4 + x3+ x2 + x1+1.

Для корня со степенью 5: m5(x) = (x – a5 ) (x – a10 ) = x2 + x+1

Шаг 4. Нахождение порождающего полинома.

Из 1.5 , где  это минимальные полиномы для заданных корней, то было получено, что


Заключение

 

В данной работе рассмотрено краткое математической описание циклических кодов с точки зрения алгебры конечных полей, которого вполне достаточно для решения задачи нахождения порождающего полинома кода, используя его корни. Безусловно, материал изложен в очень сжатой форме и многое нужно принять, как аксиому. Изначально данная работа задумывалась, как описание алгоритма нахождения полинома с некоторыми комментариями к каждому шагу, но в процессе описания алгоритма, оказалось, что без краткой теории конечных полей это сделать невозможно.


Список литературы

 

1.  У. Питерсон, Э. Уэлдон. «Коды, исправляющие ошибки»: Москва: Мир, 1976.

2.  Р. Блейхут. «Теория и практика кодов исправляющих ошибки»: Москва: Мир, 1986. - 576с.

3.  Жуков А.Б. , Каменский С.В. Передача сообщений. – НГТУ, 2003.


Приложения

Приложение А. Таблица неприводимых полиномов над GF(2).

 


Приложение Б. Таблица двоичных некоторых циклических кодов тривиальной длины

 

 


Информация о работе «Построение порождающего полинома циклического кода по его корням (степеням корней)»
Раздел: Математика
Количество знаков с пробелами: 21743
Количество таблиц: 0
Количество изображений: 12

Похожие работы

Скачать
13104
1
4

... , если его длина n=qm-1 над GF(q). Если длина кода меньше длины примитивного кода, то код называется укороченным или непримитивным. Общее свойство кодовых слов циклического кода - это их делимость без остатка на некоторый многочлен g(x), называемый порождающим. Результатом деления двучлена xn+1 на многочлен g(x) является проверочный многочлен h(x). При декодировании циклических кодов используются ...

Скачать
9509
0
2

... кодов используются так называемые сверточные коды, контрольные биты, в которых формируются непрерывно из информационных и контрольных бит смежных блоков. Выводы Таким образом, в результате написания реферата, пришли к выводу, что коды Боуза-Чоудхури-Хоквингхема – это широкий класс циклических кодов, способных исправлять многократные ошибки. БЧХ-коды играют заметную роль в теории и практике ...

Скачать
509004
6
0

... ? 8. Какими программами можно воспользоваться для устранения проблем и ошибок, обнаруженных программой Sandra? Раздел 3. Автономная и комплексная проверка функционирования и диагностика СВТ, АПС и АПК Некоторые из достаточно интеллектуальных средств вычислительной техники, такие как принтеры, плоттеры, могут иметь режимы автономного тестировании. Так, автономный тест принтера запускается без ...

Скачать
369637
0
0

... мероприятия по обеспечению однородности выпускаемой продукции. Все эти мероприятия можно объединить в четыре группы: 1. совершенствование технологии производства; 2. автоматизация производства; 3. технологические (тренировочные) прогоны; 4. статистическое регулирование качества продукции. 2.10. Проектирование технологических процессов с использованием средств ...

0 комментариев


Наверх