4. Радиография

Клиническая радиометрия предназначена для однократного или нескольких повторных измерений радиоактивности организма или его части. С ее помощью невозможно получить представление о быстро протекающих процессах, например о кровотоке в различных органах, о вентиляции легких, о функции почек и т. д. Для регистрации подобных функциональных параметров необходимо получить сведения о динамике транспорта радионуклида. Это осуществляют посредством радиографа.

Радиография — метод непрерывной или дискретной регистрации процессов накопления, перераспределения и выведения РФП из организма или отдельных органов. Для этих целей применяют радиографы — радиометры, в которых измеритель скорости счета соединен с самописцем, вычерчивающим кривую. В составе радиографа может быть один или несколько детекторов, причем каждый из них ведет измерение излучения независимо от другого.

Типичным примером радиографии является исследование накопления и выведения РФП из легких — так называемая радиопульмонография. Над разными отделами обоих легких устанавливают коллимированные сцинтилляционные детекторы. К вдыхаемой пациентом смеси добавляют радиоактивный ксенон (133Хе). Это инертный газ, который быстро выводится из организма и не создает в нем сколько-нибудь значительную дозу радиации. Динамику радиоактивности над каждым отделом легких радиограф регистрирует в виде кривой. Полученные кривые позволяют судить о поступлении и выведении газа, т. е. о вентиляции всех отделов легких.

Радиографический метод отличается простотой выполнения. Но он уступает по точности исследованию на гамме-камере. Главный его недостаток — неконтролируемая «геометрия счета», т. е. отсутствие возможности точно установить детектор над исследуемым органом, строго охватив его границы. Не дает радиограф и изображения органа. Трактовка результатов затруднена, если в состав радиографа не введен компьютер.

 

5. Радионуклидная визуализация

Термин «визуализация» образован от английского слова vision (зрение). Им обозначают получение изображения. Радионуклидная визуализация — создание картины пространственного распределения в органах РФП, введенного в организм (гамма-топография). Для визуализации распределенного в организме РФП в современных радиологических центрах и лабораториях применяют 4 радиодиагностических прибора: сканер, гамма-камеру, однофотонный эмиссионный томограф и двухфотонный (позитронный) эмиссионный томограф.

Соответственно различают 4 вида гамма-топографических исследований: сканирование, сцинтиграфию, однофотонную эмиссионную томографию и позитронную эмиссионную томографию.

6. Радионуклидное сканирование и сцинтиграфия

 

Радионуклидное сканирование - метод визуализации органов и тканей с помощью введения в организм РФП. Гамма-излучение распределенного в теле человека радионуклида регистрируют посредством движущегося над телом сцинтилляционного детектора. Прибор для радионуклидного сканирования называется сканер.

Сканер состоит из коллимированного сцинтилляционного детектора, приспособления для его перемещения над исследуемым, пересчетной схемы и маркера, жестко связанного с подвижным детектором и отмечающего на бумаге штрихами, цифрами или цветом зарегистрированную радиоактивность. Детектор построчно обходит исследуемую часть тела с заранее установленными скоростью и шагом. Когда детектор дошел до конца изучаемого участка, каретка сканера перемещается на заданное расстояние («шаг») и детектор вновь совершает движение по прямой, но уже к другому краю этого участка. Скорость движения устанавливают с учетом интенсивности излучения. Чем больше импульсов регистрирует прибор, тем быстрее можно перемещать детектор. Получаемое изображение называют сканограммой .

К сожалению, у сканирования есть определенные ограничения. Главное из них - большая продолжительность исследования. Она достигает порой нескольких десятков минут. Это обременительно для пациента, который должен лежать неподвижно. Кроме того, за такой срок меняется распределение РФП в ряде органов и нет возможности получать изображения органов с быстрым прохождением по ним РФП. Эти ограничения были сняты путем создания другого прибора для радионуклидной визуализации — гамма-камеры. Исследования на гамма-камере получили название сцинтиграфии.

Сцинтиграфия — получение изображения органов и тканей посредством регистрации на гамма-камере излучения инкорпорированных в теле человека радионуклидов. Сцинтиграфия — основной способ радионуклидной визуализации в современной клинике. Он позволяет изучать быстро протекающие процессы распределения вводимых в организм радиоактивных соединений.

В отличие от сканера гамма-камера имеет сцинтилляционный кристалл больших размеров — до 53 см в диаметре. Это обеспечивает регистрацию излучения одномоментно из всей исследуемой части тела. Исходящие из органа гамма-фотоны вызывают световые вспышки в кристалле. Эти вспышки регистрируются несколькими десятками фотоэлектронных умножителей, равномерно расположенных над поверхностью кристалла. Электрические импульсы из ФЭУ через усилитель и дискриминатор передаются в блок анализатора, который формирует сигнал на экране электронно-лучевой трубки. При этом координаты светящейся на экране точки точно соответствуют координатам световой вспышки в сцинтилляторе и, следовательно, расположению распавшегося ядра атома радионуклида в органе. Так создается радионуклидное изображение — сцинтиграмма.

Принято различать статическую и динамическую сцинтиграфию. Под статической визуализацией имеют в виду изготовление небольшого числа изображений органа с преимущественной задачей изучить его морфологию и выявить в нем участки с повышенным или пониженным накоплением радионуклида («горячие» и «холодные» очаги, зоны).

При динамической сцинтиграфии информацию записывают непрерывно или через короткие промежутки времени и отражают на целой серии кадров. Интервалы между кадрами выбирают с учетом скорости изучаемых процессов. РФП для динамического исследования обычно вводят в кровь в малом концентрированном объеме («болюсе»).

В принципе каждая сцинтиграмма в той или иной степени характеризует функцию органа - ведь РФП накапливается и выделяется преимущественно нормальными и активно функционирующими клетками. Поэтому сцинтиграмма — это функционально-анатомическое изображение. Этим оно отличается от рентгеновского и ультразвукового изображения. Но, тем не менее, когда врача интересуют главным образом морфологические и топографические параметры органа, он прибегает к статической сцинтиграфии. Когда же необходимо исследовать быстро протекающие процессы, используют динамическую регистрацию изображений.

Некоторые гамма-камеры снабжены движущимся столом. Находясь на нем во время исследования, пациент «просматривается» детектором камеры с головы до ног. Накапливающаяся в результате такой процедуры информация отражает распределение РФП во всем организме. Данный метод особенно эффективен при поиске скрытых метастазов в скелете или случайно инкорпорированных радиоактивных веществ.

Качественный скачок в радионуклидной визуализации был сделан в результате введения в структуру гамма-камеры специализированного компьютера. Стало возможным проводить компьютерную обработку изображений, переносить их на магнитные носители. При анализе сцинтиграмм начали широко применять математические методы, системный анализ, камерное моделирование физиологических и патологических процессов.

Все нарастающее значение приобретает сцинтиграфия в диагностике злокачественных опухолей. Первоначально эта диагностика основывалась на том, что опухолевая ткань утрачивает способность захватывать из крови РФП, который поглощают здоровые окружающие клетки. Например, раковый узел в печени не концентрирует 99mТс - коллоид, хотя окружающая его ткань по-прежнему улавливает РФП из крови. В подобных случаях опухоль может быть выявлена как очаг пониженной радиоактивности («холодный» узел). Но этот симптом неспецифичен, так как любой процесс, ведущий к замещению функционирующей паренхимы органа, тоже обусловливает участок пониженной радиоактивности. Скажем, в печени к этому ведет развитие абсцесса, кисты, очагового склероза.

Гораздо привлекательнее выглядит другая идея: вводить в организм туморотропный препарат, т. е. РФП, который включается главным образом в клетки с высокой степенью митотической и метаболической активности. Благодаря повышенной концентрации РФП опухоль будет вырисовываться на сцинтиграммах как очаг высокой радиоактивности («горячий» очаг). Такую методику выявления опухолей назвали позитивной сцинтиграфией. Подсчитано, что для уверенной диагностики необходимо, чтобы в опухоли накопилось не менее 30% введенной в организм активности. При этом соотношение радиоактивности опухоли и окружающей ткани должно быть не менее 3:1.

Позитивную сцинтиграфию производят для выявления первичных злокачественных опухолей, обнаружения метастазов и установления рецидивов после хирургическог или лучевого лечения.

Весьма заманчивой кажется новая идея позитивной сцинтиграфии - введение в организм больного химических соединений, меченных моноклональными антителами. Эта методика получила наименование радиоиммуносцинтиграфии. Первые публикации, касающиеся ее применения при колоректальном раке и опухолях молочных желез, обнадеживают. Развитию позитивной сцинтиграфии опухолей способствуют также новые способы визуализации органов - одно- и двухфотонная эмиссионная томография.

 


Информация о работе «Радионуклидные методы исследования»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 34822
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
62549
0
0

... науки, в том числе и в медицине. Радионуклидная визуализация основана на регистрации излучения, испускаемого находящимся внутри пациента радиоактивным веществом. Таким образом, общее между рентген- и радионуклидной диагностикой – использование ионизирующего излучения. Радиоактивные вещества, называемые радиофармацевтическими препаратами (РФП), могут использоваться как в диагностических, так и в ...

Скачать
19972
0
0

... выполнить и путем внутривенного введения радиоактивного ксенона, растворенного в изотоническом растворе натрия хлорида, с последующей регистрацией очищения легких от ксенона на гамма-камере. Методы лучевой диагностики сердца Наряду с ультразвуковой диагностикой в последнее время бурно развивались радионуклидные методы исследования сердца и сосудов. Среди этих методов необходимо выделить три: ...

Скачать
8540
0
0

... способны накапливаться в фагоцитирующих клетках (клетках ретикулоэндотелиальной системы, макрофагах и т.п.). Соответственно, картину того или иного состояния, полученную с помощью какого-либо метода радионуклидной диагностики будут определять: тропность РФП к ткани (характер ткани, состав ткани), перфузия участка ткани, функциональное состояние ткани. Например, на сцинтиграмме печени обнаружено ...

Скачать
35225
1
0

... развитие гепатита, и, конечно, прекращение приёма алкоголя, приводящего к тяжёлому поражению печени. Для диагностики поражений печени и желчевыводящих путей применяют рентгенологические (контрастные, КТ), радионуклидные методы исследования; УЗИ, эндоскопию, дуоденальное зондирование, лапароскопию и биопсию. Рентгенологические методы с контрастированием особенно информативны для выявления ...

0 комментариев


Наверх