1.1 Правила решения комбинаторных задач
В математике и ее приложениях часто приходится иметь дело с различного рода множествами и подмножествами: устанавливать их связь между элементами каждого, определять число множеств или их подмножеств, обладающих заданным свойством. Такие задачи приходится рассматривать при определении наиболее выгодных коммуникаций внутри города, при организации автоматической телефонной связи, работы морских портов, при выявлении связей внутри сложных молекул, генетического кода, а также в лингвистике, в автоматической системе управления, значит и в теории вероятностей, и в математической статистике со всеми их многочисленными приложениями.
Один из разделов теории вероятности – комбинаторика.
Комбинаторика – ветвь математики, изучающая комбинации и перестановки предметов. Еще комбинаторику можно понимать как перебор возможных вариантов. Комбинаторика возникла в XII веке. Долгое время она лежала вне основного русла развития математики.
Задачи, в которых идет речь о тех или иных комбинациях объектов, называются комбинаторными. Область математики, в которой изучаются комбинаторные задачи, называется комбинаторикой [23, 28].
Раздел комбинаторики, в котором рассматривается лишь вопрос о подсчете числа решений комбинаторной задачи, называется теорией перечислений. Он тесно связан с теорией вероятностей. Во многих случаях при вычислении вероятности данного события надо найти число возможных вариантов и число благоприятных вариантов. Число вариантов отыскивается комбинаторными методами [23, 19].
С задачами, в которых приходилось выбирать те или иные предметы, располагать их в определенном порядке и отыскивать среди разных расположений наилучшие, люди столкнулись еще в доисторическую эпоху, выбирая наилучшее положение охотников во время охоты, воинов – во время битвы, инструментов – во время работы.
Комбинаторные навыки оказались полезными и в часы досуга. Нельзя точно сказать, когда наряду с состязаниями в беге, метании диска, прыжках появились игры, требовавшие, в первую очередь, умения рассчитывать, составлять планы и опровергать планы противника.
Со временем появились различные игры (нарды, карты, шашки, шахматы и т.д.). В каждой из этих игр приходилось рассматривать различные сочетания фигур, и выигрывал тот, кто их лучше изучил, знал выигрышные комбинации и умел избегать проигрышных. Не только азартные игры давали пищу для комбинаторных размышлений математиков. Еще с давних пор дипломаты, стремясь к тайне переписки, изобретали сложные шифры, а секретные службы других государств пытались эти шифры разгадать. Стали применять шифры, основанные на комбинаторных принципах, например, на различных перестановках букв, заменах букв с использованием ключевых слов и т.д.
Комбинаторика как наука стала развиваться в XIII веке параллельно с возникновением теории вероятностей, так как для решения вероятностных задач необходимо было подсчитать число различных комбинаций элементов. Первые научные исследования по комбинаторике принадлежат итальянским ученым Дж. Кардано, Н.Тарталье (1499-1557), Г.Галилею (1564-1642) и французским ученым Б.Паскалю (1623-1662) и П.Ферма.
Комбинаторику как самостоятельный раздел математики первым стал рассматривать немецкий ученый Г. Лейбниц в своей работе «Об искусстве комбинаторики», опубликованной в 1666 году. Он также впервые ввел термин «комбинаторика». Значительный вклад в развитие комбинаторики внес Л.Эйлер. В современном обществе с развитием вычислительной техники комбинаторика «добилась» новых успехов. В настоящее время в образовательный стандарт по математике включены основы комбинаторики, решение комбинаторных задач методом перебора, составлением дерева вариантов (еще его называют «дерево возможностей») с применением правила умножения.
Возрастает роль комбинаторных задач уже в начальном обучении математике, так как в них заложены большие возможности не только для развития мышления учащихся, но и для подготовки учащихся к решению проблем, возникающих в повседневной жизни [11, 18].
Рассмотрим исходные понятия, лежащие в основе решения комбинаторных задач.
Правила решения комбинаторных задач
В основе науки «Комбинаторики» лежит теория множеств. Множество – это основное понятие теории множеств, поэтому никак не определяется, а поясняется на примерах (множество натуральных чисел, множество треугольников, квадратов).
В математике изучают не только те или иные множества, но и отношения, взаимосвязи между ними. Например, известно, что все натуральные числа являются целыми, т. е. множество натуральных чисел является подмножеством множества целых чисел. Множество В называют подмножеством множества А, если каждый элемент множества В является также элементом множества А.
Используя 2 цифры, например, 3 и 5, можно записать 4 двузначных числа: 35, 53, 33 и 55. Несмотря на то, что числа 35 и 53 записаны с помощью одних и тех же цифр, эти числа различные. В том случае, когда важен порядок следования элементов, говорят об упорядоченных наборах элементов. Такие наборы называют кортежами и различают по длине. Длина кортежа – это число элементов, из которых он состоит. Например, (3; 6; 7) – это кортеж длины 3.
Рассматривают в математике и декартово произведение множеств. Декартовым произведением множеств А1, А2, … , Аn называют множество всех кортежей длины n, первая компонента которого принадлежит множеству А, вторая – множеству А2, … , n-я множеству Аn.
Если в множестве А содержится а элементов, а в множестве В – b элементов, то в декартовом произведении множества А и В содержится а·b элементов, т. е. n(A×B)=n(A)·n(B)=a·b [23, 6].
Задача: сколько двузначных чисел можно записать, используя цифры 5, 4 и 7?
Решение: запись любого двузначного числа состоит из двух цифр и представляет собой упорядоченную пару. В данном случае эти пары образуются из элементов множества А={5, 4, 7}. В задаче требуется узнать число таких пар, т. е. число элементов в декартовом произведении А×А. Согласно правилу n(A×А)=n(A)·n(А)=3·3=9. Значит, двузначных чисел, записанных с помощью цифр 5, 4 и 7, будет 9.
Таким образом, на основе некоторых понятий теории множеств строятся основные понятия комбинаторики.
Комбинаторные задачи в начальном курсе математики решаются, как правило, методом перебора. Для облегчения этого процесса нередко используются таблицы и графы. В связи с этим необходимы определенные умения и навыки решения комбинаторных задач. Прежде всего, решая несложные комбинаторные задачи, нужно грамотно осуществлять перебор возможных вариантов.
Задача: сколько двузначных чисел можно составить, используя цифры 1, 4 и 7?
Решение: для того чтобы не пропустить и не повторить ни одно из чисел, будем выписывать их в порядке возрастания. Сначала запишем числа, начинающиеся с цифры 1, затем с цифры 4 и, наконец, с цифры 7: 11, 14, 17, 41, 44, 47, 71, 74, 77. Таким образом, из трех данных цифр можно составить всего 9 различных двузначных чисел.
Существует единый подход к решению самых разных комбинаторных задач с помощью составления специальных схем. Внешне такая схема напоминает дерево, отсюда название – дерево возможных вариантов. При правильном построении дерева ни один из возможных вариантов решения не будет потерян. Знак * изображает корень дерева, ветви дерева – различные варианты решения [15, 115].
Правило суммы
В комбинаторике, которая возникла раньше теории множеств, правило нахождения числа элементов объединения двух непересекающихся конечных множеств называют правилом суммы и формулируют в таком виде.
Если объект а можно выбрать m способами, а объект b – k способами (не такими, как а), то выбор «либо а, либо b» можно осуществить m+k способами.
п(А+В)=п(А)+п(В)
Задача: на тарелке лежат 5 яблок и 4 апельсина. Сколькими способами можно выбрать один плод?
Решение: по условию задачи яблоко можно выбрать пятью способами, апельсин – четырьмя. Так как в задаче речь идет о выборе «либо яблоко, либо апельсин», то его, согласно правилу суммы, можно осуществить 5+4=9 способами.
Правило произведения
Правило нахождения числа элементов декартова произведения двух множеств называют в комбинаторике правилом произведения и формулируют в таком виде.
Если объект а можно выбрать m способами, а объект b - k способами, то пару (a, b) можно выбрать m∙k способами.
п(А×В)=п(А)× п(В)
Правило суммы и произведения, сформулированные для двух объектов, можно обобщить и на случай t объектов.
Задача: сколько трехзначных чисел можно составить, используя цифры 7, 4 и 5?
Решение: в данной задаче рассматриваются трехзначные числа, так как цифры в записи этих чисел могут повторяться, то цифру сотен, цифру десятков и цифру единиц можно выбрать тремя способами каждую. Поскольку запись трехзначного числа представляет собой упорядоченный набор из трех элементов, то, согласно правилу произведения, его выбор можно осуществить 27 способами, так как 3∙3∙3=27.
Правила суммы и произведения – это общие правила решения комбинаторных задач. Кроме них в комбинаторике пользуются формулами для подсчета числа отдельных видов комбинаций, которые встречаются наиболее часто. Рассмотрим некоторые из них и, прежде всего те, знание которых необходимо [24, 72].
Размещения
С теоретико-множественной точки зрения запись любого двузначного числа – это кортеж длины двух. Записывая различные двузначные числа с помощью цифр 7, 4 и 5, мы по сути дела образовывали из данных трех цифр различные кортежи длины двух с повторяющимися элементами. В комбинаторике такие кортежи называют размещениями с повторениями из трех элементов по два элемента.
Размещение с повторениями из k элементов по m элементов – это кортеж длины m, составленный из m элементов k-элементного множества.
=km
Из определения следует, что два размещения из k элементов по m элементов отличаются друг от друга либо составом элементов, либо порядком их расположения.
Например, два двузначных числа из перечисленных выше (а это размещения из трех элементов по два) отличаются друг от друга либо составом элементов (74 и 75), либо порядком их расположения (74 и 47).
Задача: сколько всевозможных двузначных чисел можно записать, используя цифры 7, 4 и 5?
Решение: пользуясь формулой =km, легко подсчитать, сколько двузначных чисел можно записать, используя цифры 7, 4 и 5. так как речь идет о размещениях с повторениями их трех элементов по два, то =32=9.
Нередко встречаются задачи, в которых требуется подсчитать число кортежей длины m, образованных из k элементов некоторого множества, но при условии, что элементы в кортеже не повторяются. Такие кортежи называются размещениями без повторений из k элементов по m элементов.
Размещение без повторений из k элементов по m элементов – это кортеж длины m, составленный из неповторяющихся элементов множества, в котором k элементов.
,
m множителей
Задача: сколько всевозможных трехзначных чисел можно записать, используя цифры 7, 4 и 5, так, чтобы цифры в записи числа не повторялись?
Решение: в задаче рассматриваются размещения без повторений из трех элементов по три, и их число можно подсчитать по формуле:
=3(3-1)∙(3-2)=3∙2∙1=6.
Эти числа таковы: 745, 754, 475, 457, 547, 574.
Одним из видов размещений являются перестановки.
Перестановки
Два размещения без повторений из n элементов по m состоят из одних и тех же элементов, расположенных в различном порядке. Такие размещения называют перестановками без повторений из n элементов.
где n!=1∙2∙3∙…∙n
Читают «n факториал». Считают, что 1!=1, 0!=1. Например, 5!=1∙2∙3∙4∙5=120; 7!=1∙2∙3∙4∙5∙6∙7=5040.
Задача: сколькими способами можно расставить на шахматной доске 8 одинаковых ладей, так, чтобы никакие две из них не били друг друга?
Решение: ладьи не будут бить друг друга тогда и только тогда, когда на каждой горизонтали и каждой вертикали стоит ровно одна ладья. Поэтому будем выставлять их по горизонталям. Первую можно поставить на любые 8 полей первой горизонтали, вторую на 7 полей второй горизонтали (одна вертикаль уже занята первой ладьей) и т.д. Получаем Р8=8!=40320 способов.
Пусть дан кортеж длинны п, составленный из элементов множества Х={х1, …, хk}. Причем элемент х1 входит в этот кортеж п1 раз, элемент хk– пk раз. Тогда п=п1+…+пk. Если переставлять в этом кортеже буквы, то будут получаться новые кортежи, имеющие тот же состав. Эти кортежи называются перестановками с повторениями из элементов х1,…, хk, имеющими состав (п1, … , пk).
Задача: сколько различных кортежей получится, если переставлять буквы слова «математика»?
Решение: это слово имеет состав: м – 2, а – 3, т – 2, е – 1, и – 1, к – 1, то есть (2, 3, 2, 1, 1, 1), поэтому получим Р(2,3,2,1,1,1)=
В размещениях и перестановках важен порядок размещения элементов кортежа.
Сочетания
В отличие от размещений, в сочетаниях порядок элементов множества не важен.
Из элементов множества Х={7, 4, 5} можно образовывать не только кортежи различной длины, но и различные подмножества, например двухэлементные. В комбинаторике их называют сочетаниями без повторений из трех элементов по два элемента.
Сочетание без повторения из k элементов по m элементов – это m-элементное подмножество множества, содержащего k элементов.
Два сочетания из k элементов по m элементов отличаются друг от друга хотя бы одним элементом.
Число всевозможных сочетаний без повторений из k элементов по m элементов обозначают [23, 154].
Задача: четыре человека сыграли друг с другом по одной партии в шахматы. Сколько было сыграно партий?
Решение: каждую партию можно рассматривать как комбинацию из двух элементов четырех элементного множества, в которой порядок расположения элементов не существен. Но такие комбинации являются сочетаниями без повторений из 4 элементов по 2 и их число равно:
Сочетанием с повторениями из n элементов по k элементов называется всякая последовательность из k элементов, членами которой являются элементы n [29].
=
Задача: сколько наборов из 7 пирожных можно составить, если в продаже имеется 4 сорта пирожных?
Решение: = = = = =120.
В комбинаторике решаются задачи, связанные с рассмотрением множеств и составлением различных комбинаций из элементов этих множеств. В зависимости от правил составления можно выделить три типа комбинаций: перестановки, размещения, сочетания [28].
Конечно, применение формул облегчает подсчет числа возможных вариантов решений той или иной комбинаторной задачи. Однако чтобы воспользоваться формулой, необходимо определить вид комбинаций, о которых идет речь в задаче, что бывает сделать не очень просто.
Виды комбинаций | Формула | |
На «языке» комбинаторики | На теоретико-множественном «языке» | |
Размещения с повторениями из к элементов по т элементов | Кортежи длины т, составленные из m элементов k-элементного множества (важен порядок элементов). | |
Размещения без повторений из к элементов по т элементов | Кортежи длины m, составленные из неповторяющихся элементов множества, в котором k элементов (важен порядок элементов). | |
Перестановки с повторениями из n элементов | Кортежи, составленные из n повторяющихся элементов множества (важен порядок элементов) | |
Перестановки без повторений из к элементов | Размещения из k элементов по k элементов (важен порядок элементов). | Рk=k! |
Сочетания без повторений из к элементов по т элементов | m-элементное подмножество множества, содержащего k элементов (порядок элементов не важен) | |
Сочетания с повторениями из элементов n-типов | Всякая последовательность из k элементов, членами которой являются элементы n (порядок элементов не важен) |
Данная таблица дает представления о возможности использования формул комбинаторики и теоретико-множественном смысле комбинаторике.
Таким образом, решая некоторые комбинаторные задачи, можно решить жизненные проблемы. Например, заведующему учебной частью школы – составить расписание уроков, лингвисту - учесть различные варианты значений букв незнакомого языка. Следовательно, комбинаторные задачи играют большую роль не только в обучении математике, но и вообще в жизни.
Для использования комбинаторных задач на уроках математики учителю необходимо знать методику обучения решению комбинаторных задач.
1.2 Методика обучения решению комбинаторных задач
В комбинаторных задачах заложены большие возможности для развития мышления учащихся. Кроме того, в процессе обучения решению комбинаторных задач можно расширить знания учащихся о самой задаче, познакомить их с новым способом решения задач; подготовить к решению жизненных практических проблем, научить принимать оптимальное в данной ситуации решение; организовать элементарную исследовательскую и творческую деятельность учащихся.
В процессе решения комбинаторных задач учащиеся приобретают опыт хаотичного перебора возможных вариантов. И на основе этого опыта в дальнейшем можно будет обучать детей организации систематического перебора.
Выделяют три этапа обучения комбинаторным задачам в 5 классе:
1. Подготовительный.
2. Решение задач с небольшим числом возможных вариантов.
3. Работа с графическими средствами.
На подготовительном этапе идет работа над совершенствованием мыслительных операций (анализа, синтеза, сравнения), которые входят в состав деятельности при решении комбинаторных задач. Особое внимание уделяется сравнению объектов, состоящих из отдельных элементов. В этом случае сравнение может быть проведено по таким основаниям, как: числу элементов; составу, входящих в объект элементов; порядку расположения элементов в объекте. Например, предлагаются следующие задания:
1. Рассмотри внимательно колечки из бусинок. Скажи, что изменяется от одного колечка к другому.
Рис. 1
2. Вставить пропущенные числа:
1) 24, 21, 19, 18, 15, 13, _ , _ , 7,6 (12, 9);
2) 1, 4, 9, 16, _ , _ , 49, 64, 81, 100 (25, 36);
3) 16, 17, 15, 18, 14, 19, _ , _ (13, 20);
4) 2 5 9 (2+4):2=3
4 7 5 (5+7):2=6
3 6 ? (9+5):2=7
5) 12 (56) 16 (12+16)∙2=56
17 (__) 21 (21+17) ∙2=76
3. Решить задачу:
Мальчик написал число 86, затем увеличил его на 12, не производя записи. Как он это сделал? (перевернул его)
На втором этапе школьники учатся находить все возможные варианты в комбинаторных задачах, организуя перебор в определенной системе. Но здесь решаются задачи с небольшим числом возможных вариантов. Основная цель этого этапа – обучение школьников решению комбинаторных задач с использованием систематического перебора всех возможных вариантов [2, 43].
Каким же образом можно подвести учеников к идее организации перебора в определенной системе, как мотивировать переход от хаотичного к систематическому перебору?
Разыгрывается следующая ситуация: Маша, Саша и Даша едут в электричке на дачу. Они сидят на одной скамейке (трое детей садятся у доски на стулья в любом порядке). Детям нужно было проехать 8 остановок. Чтобы не было скучно ехать, они решили на каждой остановке меняться местами. Ставится вопрос «Смогут ли дети каждый раз меняться местами так, чтобы их новое расположение оказывалось все время отличным от предыдущих?». Ученики предлагают варианты расположения детей, они проигрываются у доски и записываются. Пока перебор осуществляется случайным образом, хаотично. После того как найдены 6 расположений, ученики стараются еще составить другой, новый вариант. Все их попытки сделать это не приводят к успеху. Встает вопрос «Почему они не нашли седьмой вариант: не могут это сделать или его не существует и уже найдены все возможные расположения?». Чтобы ответить на него, учащимся предлагается рассмотреть составленные 6 вариантов, найти и записать пары вариантов, очень похожие друг на друга. Например, можно выделить такие тройки:
М. С. Д. С. Д. М. Д. М. С.
М. Д. С. С. М. Д. Д. С. М.
Полученная последовательность вариантов анализируется. Учащиеся замечают, что все девочки сидели у окна и, когда одна из них сидит у окна, то две другие могут разместиться только двумя различными способами. Таким образам, дети убеждаются в том, что можно составить только 6 различных вариантов, других быть не может. Затем учитель просит учеников по записанным вариантам еще раз рассказать, какой способ пересаживания был выбран во втором случае. И обращает внимание на то, что, используя его, можно быстро составить варианты, не повторяя дважды одни и те же, и быть уверенным, что найдены все возможные варианты. В дальнейшем решение задач хаотичным перебором не запрещается. Но те ученики, которые проводят перебор по определенной системе, поощряются. Предложенные ими способы разбираются и подчеркиваются преимущества осуществления такого перебора. Постепенно дети убеждаются в пользе систематического перебора и приучаются его использовать.
В одной и той же задаче можно выбрать разную систему перебора, и каждый ученик сам решает, как он будет действовать. Так, например, при решении приведенной выше задачи можно было ориентироваться на сидящего посередине (или у прохода):
С.М.Д. М.С.Д. М.Д.С. С.М.Д. М.Д.С. Д.С.М
Д.М.С. Д.С.М. С.Д.М. М.С.Д. Д.М.С. С.Д.М.
Можно предложить учащимся использовать прием, заключающийся во временном уменьшении числа элементов и составлении требуемых в задаче комбинаторных соединений на основе найденных вариантов для меньшего числа элементов. Например, задача: «Сколько разных фигур можно составить на листе бумаги из четырех одинаковых квадратов при условии, что квадраты соприкасаются точно по сторонам?» Чтобы ее решить, учитель предлагает детям сначала все возможные фигуры из трех квадратов. Затем взять первую фигуру, составленную из трех квадратов, и по-разному присоединять к ней четвертый квадрат, следя за тем, чтобы не получились одинаковые фигуры. Также предлагается действовать и со второй фигурой, составленной из трех квадратов (рис 2).
Рис. 2
Рис. 3
После того как школьники убедятся в преимуществе систематического перебора, им следует показать, что есть и такие задачи, в которых не стоит искать какую-либо систему перебора. Это задачи комбинаторной геометрии. Комбинаторная геометрия – это раздел математики, который занимается вопросами расположения и комбинаций фигур. Например, нужно из деталей, изображенных на рис. 3, выложить «лесенку», по заданному контуру (рис. 4). Различные решения (рис. 5, 6, 7,) находятся в процессе хаотичного перебора, так в этой задаче можно быстрее и легче выполнить требуемое.
Рис. 4 Рис. 5 Рис. 6 Рис. 7
При решении комбинаторных задач в некоторых случаях у школьников могут возникать затруднения в различении составляемых соединений, связанных с тем, что для определения их неразличимости нужно выполнить определенные геометрические преобразования.
Составление комбинаторных соединений происходит с опорой на запись. Следовательно, в задачах, в которых элементы являются реальными предметами, стоит проблема их обозначения. И если в начале обучения используются конкретные, наглядные заместители реальных предметов, то в дальнейшем учащиеся постепенно переходят к применению условных обозначений. Например, задача: «На каждом флажке должны быть три горизонтальные полоски: красного, синего и белого цвета. Сколько можно получить различных флажков, если менять порядок расположения цветов?» Решая ее, можно выбрать различные способы обозначения флажков.
|
Непосредственный перебор всех возможных вариантов при решении комбинаторных задач в некоторых случаях может быть затруднен. Облегчить процесс нахождения этих вариантов можно, научив детей пользоваться такими средствами перебора, как таблицы и графы. Они позволяют расчленить ход рассуждений, четко провести перебор, не упустив каких-либо имеющихся возможностей. Решение задач с использованием таблиц и графов является основным содержанием третьего этапа, выделяемого в обучении школьников решению комбинаторных задач.
Сначала как с наиболее простым средством организации перебора учащиеся знакомятся с таблицами. Рассматривая таблицу (рис. 9) ученики открывают принцип её составления. Затем им предлагают заполнить другую таблицу. Проговариваются разные способы заполнения: по строчкам, по столбцам.
В дальнейшем в целях освоения принципа составления таблиц используются и такие задания:
1. Запиши в нужные клетки таблицы (рис. 10) следующие числа: 57, 75, 44, 47, 55, 77, 47. Какие числа нужно записать в оставшиеся клетки?
2. Проверь, правильно ли заполнена таблица (рис. 11).
Когда школьники научатся составлять таблицы, можно переходить к решению комбинаторных задач с их использованием. Как правило, дети неоправданно много времени тратят на вычерчивание самой таблицы: затрудняются определить нужные размеры, разметить все строчки и столбики.
Для того чтобы помочь детям разметить таблицу, методистами были разработаны специальные трафареты (рис. 12). Опишем, как действуют учащиеся, решая с помощью таблицы задачу: «В одной деревне по сложившейся традиции мужчин называют каким-либо из следующих имен: Иван, Петр, Василий и Михаил. Проживают в этой деревне 15 мужчин. Может ли оказаться так, что в деревне нет мужчин с одинаковым именем, отчеством?» Ученик накладывает на тетрадный лист трафарет. Вписывает через «окошечки» на трафарете в верхнюю строчку и в первый столбик данные задачи. Через прорези намечает места записи составляемых объектов. Убирает трафарет. Цветными линиями отчерчивает данные задачи (рис. 13).
Затем ученик заполняет таблицу (рис. 14), подсчитывает число всех возможных отличающихся имен-отчеств, сравнивает с числом мужчин в деревне и отвечает на вопрос задачи.
При заполнении таблиц нужно каждый раз определять, следует записывать составляемое
Рис. 16
Составляются недостающие рукопожатия (эти линии лучше проводить другим цветом, так как потом легче будет подсчитывать общее число рукопожатий). И так действуют до тех пор, пока все не поздороваются друг с другом. По получившемуся графу (рис. 16) подсчитывается число рукопожатий (их всего 10).
Следующая задача: «Сколько двузначных чисел можно составить, используя цифры 1, 2, 3, 4?» приводит учащихся к изображению ориентированного графа (рис. 17). Идея проведения стрелок возникает, когда учащиеся задумываются
Рис. 17
как обозначить, например, число 12: показать, что оно начинается с цифры 1, а оканчивается цифрой 2. петля появляется при обозначении, например, числа 11: стрелка должна начинаться и заканчиваться на одной и той же цифре. Открыв для себя на первых задачах эти условные обозначения (точки, линии, стрелки, петли), учащиеся в дальнейшем применяют их при решении различных задач, составляя графы того или иного вида. Приведем некоторые примеры.
1. В финал турнира по шашкам вышли два российских игрока,
Рис. 18
два немецких и два американских. Сколько партий будет в финале, если каждый играет с каждым по одному разу и представители одной страны между собой не играют? (граф на рис. 18)
Рис. 19
2. В зале лежали конфеты четырех сортов. Каждый ребенок взял по 2 конфеты. И у всех оказались отличающиеся наборы конфет. Сколько могло быть детей? (граф на рис. 19)
3. Сколько разностей можно составить из чисел 30, 25, 17, 9, если для их составления брать по 2 числа? Будут ли среди них разности, значения которых равны? (граф на рис. 20)
Можно предлагать учащимся и обратные задания: составить задачу по имеющемуся графу. Например: «Рассмотри внимательно граф (на рис. 21) и пофантазируй, о какой ситуации он может тебе рассказать». Ученики, рассуждая, что точки могут обозначать людей, предметы, а линии говорят о том, что из них образуются пары, составляют разные варианты задач, например
Рис. 20 Рис. 21
1. Четыре подружки вечером по телефону созваниваются друг с другом. Сколько звонков было сделано, если каждая подружка поговорила с каждой по одному разу?
2. В магазине продаются елочные шары четырех видов. Сколько отличающихся наборов, состоящих из двух разных шаров, можно с, состоящих из двух разных шаров, можно составить?
Примеры задач, которые можно решать с помощью таблиц и графов:
1. На фабрике есть стержни для ручек четырех цветов: красного, синего, зеленого и черного. Сколько различных трехцветных ручек можно при этом собрать?
2. У девочки есть бумага зеленого и желтого цвета. Из нее она вырезает круги, квадраты и треугольники, делая их большими и маленькими. Сколько различных вариантов у нее получится?
3. Шерлоку Холмсу нужно открыть сейф, для этого он должен отгадать код. Он знает, что код – это трехзначное число, составленное из цифр 1, 2, 3, 4 и большее числа 400. Какие числа должен проверить Шерлок Холмс, чтобы найти код?
Правила решения комбинаторных задач и представленная методика обучения решению комбинаторных задач может помочь учителю в разработке уроков.
Таким образом, если это будут не разрозненные сведения из комбинаторики, а факультативный курс, то повысится эффективность обучения, так как задачи такого вида часто включаются в олимпиадные задания. Поэтому автором данной работы была разработана программа факультативного курса по теме «Элементы комбинаторики» для 8 класса.
Глава 2. Разработка программы факультативного курса по теме «Элементы комбинаторики» для 8 класса
... наука стала развиваться в XIII веке параллельно с возникновением теории вероятностей, так как для решения вероятностных задач необходимо было подсчитать число различных комбинаций элементов. Первые научные исследования по комбинаторике принадлежат итальянским ученым Дж. Кардано, Н. Тарталье (1499-1557), Г. Галилею (1564-1642) и французским ученым Б. Паскалю (1623-1662) и П. Ферма. Комбинаторику ...
... вероятностей совместимых событий; формулы: полной вероятности, Бейеса (Байеса). Одной из форм дифференцированного обучения по курсу теории вероятностей может являться факультативный курс. 2. Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса 2.1 Основные понятия о факультативном курсе Возможность 1-2 часа в неделю дополнительно работать со ...
... -иллюстративного и репродуктивного метолов, а экономический профиль ориентирован на формирование прикладного стиля мышления. 2. Методика проведения элективных курсов по математике в профильной школе 2.1 Цели организации элективных курсов по математике Принципиальным положением организации школьного математического образования в настоящее время является дифференциация обучения ...
... мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее. Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля. 1. Комбинаторика. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с ...
0 комментариев