2. Використання радіації в медицині
Серед різноманітних видів іонізуючих випромінювань, як уже зазначалося вище, надзвичайно важливими при вивченні питання небезпеки для здоров'я і життя людини є випромінювання, що виникають в результаті розпаду ядер радіоактивних елементів, тобто радіоактивне випромінювання.
Щоб уникнути плутанини в термінах, варто пам'ятати; що радіоактивні випромінювання, незважаючи на їхнє величезне значення, є одним з видів іонізуючих випромінювань. Радіонукліди утворюють випромінювання в момент перетворення одних атомних ядер в інші. Вони характеризуються періодом напіврозпаду (від секунд до млн. років), активністю (числом радіоактивних перетворень за одиницю часу), що характеризує їх іонізуючу спроможність. Активність у міжнародній системі (СВ) вимірюється в беккерелях (Бк), а позасистемною одиницею є кюрі (Кі). Один Кі = 37 х 109Бк. Міра дії іонізуючого випромінювання в будь-якому середовищі залежить від енергії випромінювання й оцінюється дозою іонізуючого випромінювання. Останнє визначається для повітря, речовини і біологічної тканини. Відповідно розрізняють:
* експозиційну,
* поглинену та
* еквівалентну дози іонізуючого випромінювання.
Експозиційна доза характеризує іонізуючу спроможність випромінювання в повітрі, вимірюється в кулонах на 1 кг (Кл/кг); позасистемна одиниця — рентген (Р); 1 Кл/кг — 3,88 х 103Р. За експозиційною дозою можна визначити потенційні можливості іонізуючого випромінювання.
Поглинута доза характеризує енергію іонізуючого випромінювання, що поглинається одиницею маси опроміненої речовини. Вона вимірюється в. греях Гр (1 Гр-1 Дж/кг). Застосовується і позасистемна одиниця рад (1 рад — 0,01Гр= 0,01 Дж/кг).
Доза, яку одержує людина, залежить від виду випромінювання, енергії, щільності потоку і тривалості впливу. Проте поглинута доза іонізуючого випромінювання не враховує того, що вплив на біологічний об'єкт однієї і тієї ж дози різних видів випромінювань неоднаковий. Щоб врахувати цей ефекту введено поняття еквівалентної дози.
Еквівалентна доза є мірою біологічного впливу випромінювання на конкретну людину, тобто індивідуальним критерієм небезпеки, зумовленим іонізуючим випромінюванням. За одиницю вимірювання еквівалентної дози прийнятий зіверт (Зв). Зіверт дорівнює поглинутій дозі в 1 Дж/кг (для рентгенівського та а, b випромінювань). Позасистемною одиницею служить бер (біологічний еквівалент рада). 1 бер = 0,01 Зв.
Біологічна дія іонізуючих випромінювань
Під впливом іонізаційного випромінювання атоми і молекули живих клітин іонізуються, в результаті чого відбуваються складні фізико-хімічні процеси, які впливають на характер подальшої життєдіяльності людини.
Згідно з одними поглядами, іонізація атомів і молекул, що виникає під дією випромінювання, веде до розірвання зв'язків у білкових молекулах, що призводить до загибелі клітин і поразки всього організму. Згідно з іншими уявленнями, у формуванні біологічних наслідків іонізуючих випромінювань відіграють роль продукти радіолізу води, яка, як відомо, становить до 70% маси організму людини. При іонізації води утворюються вільні радикали Н+ та ОН-, а в присутності кисню — пероксидні сполуки, що є сильними окислювачами. Останні вступають у хімічну взаємодію з молекулами білків та ферментів, руйнуючи їх, в результаті чого утворюються сполуки, не властиві живому організму. Це призводить до порушення обмінних процесів, пригноблення ферментних і окремих функціональних систем, тобто порушення життєдіяльності всього організму.
Вплив радіоактивного випромінювання на організм людини можна уявити в дуже спрощеному вигляді таким чином. Припустімо, що в організмі людини відбувається нормальний процес травлення, їжа, що надходить, розкладається на більш прості сполуки, які потім надходять через мембрану усередину кожної клітини і будуть використані як будівельний матеріал для відтворення собі подібних, для відшкодування енергетичних витрат на транспортування речовин і їхню переробку. Під час потрапляння випромінювання на мембрану відразу ж порушуються молекулярні зв'язки, атоми перетворюються в іони. Крізь зруйновану мембрану в клітину починають надходити сторонні (токсичні) речовини, робота її порушується. Якщо доза випромінювання невелика, відбувається рекомбінація електронів, тобто повернення їх на свої місця. Молекулярні зв'язки відновлюються, і клітина продовжує виконувати свої функції. Якщо ж доза опромінення висока або дуже багато разів повторюється, то електрони не встигають рекомбінувати; молекулярні зв'язки не відновлюються; виходить з ладу велика кількість клітин; робота органів розладнується; нормальна життєдіяльність організму стає неможливою.
Специфічність дії іонізуючого випромінювання полягає в тому, що інтенсивність хімічних реакцій, індуційованих вільними радикалами, підвищується, й у них втягуються багато сотень і тисячі молекул, не порушених опроміненням. Таким чином, ефект дії іонізуючого випромінювання зумовлений не кількістю поглинутої об'єктом, що опромінюється, енергії, а формою, в якій ця енергія передається. Ніякий інший вид енергії (теплова, електрична та ін.), що поглинається біологічним об'єктом у тій самій кількості, не призводить до таких змін, які спричиняє іонізуюче випромінювання.
Також необхідно відзначити деякі особливості дії іонізуючого випромінювання на організм людини:
* органи чуття не реагують на випромінювання;
* малі дози випромінювання можуть підсумовуватися і накопичуватися в організмі (кумулятивний ефект);
* випромінювання діє не тільки на даний живий організм, але і на його, спадкоємців (генетичний ефект);
* різні організми мають різну чутливість до випромінювання.
Найсильнішого впливу зазнають клітини червоного кісткового мозку, щитовидна залоза, легені, внутрішні органи, тобто органи, клітини яких мають високий рівень поділу. При одній і тій самій дозі випромінювання у дітей вражається більше клітин, ніж у дорослих, тому у дітей всі клітини перебувають у стадії поділу.
Небезпека різних радіоактивних елементів для людини визначається спроможністю організму їх поглинати і накопичувати.
Радіоактивні ізотопи надходять всередину організму з пилом, повітрям, їжею або водою і поводять себе по-різному:
*деякі ізотопи розподіляються рівномірно в організмі людини (тритій, вуглець, залізо, полоній),
* деякі накопичуються в кістках (радій, фосфор, стронцій),
*інші залишаються в м'язах (калій, рубідій, цезій),
* накопичуються в щитовидній залозі (йод), у печінці, нирках, селезінці (рутеній, полоній, ніобій) тощо.
Ефекти, викликані дією іонізуючих випромінювань (радіації), систематизуються за видами ушкоджень і часом прояву. За видами ушкоджень їх поділяють на три групи: соматичні, соматико-стохастичні (випадкові, ймовірні), генетичні. За часом прояву виділяють дві групи —' ранні (або гострі) і пізні. Ранні ураження бувають тільки соматичні. Це призводить до смерті або променевої хвороби. Постачальником таких часток є в основному ізотопи, що мають коротку тривалість життя, y - випромінювання, потік нейтронів.
Гостра форма виникає в результаті опромінення великими дозами за короткий проміжок часу. При дозах порядку тисяч рад ураження організму може бути миттєвим. Хронічна форма розвивається в результаті тривалого опромінення дозами, що перевищують ліміти дози (ЛД). Більш віддаленими наслідками променевого ураження можуть бути променеві катаракти, злоякісні пухлини та інше.
Для вирішення питань радіаційної безпеки населення передусім викликають інтерес ефекти, що спостерігаються при малих дозах опромінення — порядку декілька сантизиверів на годину, що реально трапляються при практичному використанні атомної енергії. У нормах радіаційної безпеки НРБУ-97, введених 1998 p., як одиниці часу використовується рік або поняття річної дози опромінення. Це викликано, як зазначалося раніше, ефектом накопичення «малих» доз і їхнього сумарного впливу на організм людини.
Існують різноманітні норми радіоактивного зараження: разові, сумарні, гранично припустимі та інше. Всі вони описані в спеціальних довідниках.
ЛД загального опромінення людини вважається доза, яка у світлі сучасних знань не повинна викликати значних ушкоджень організму протягом життя.
Форми променевої хвороби: гостра і хронічна.
ГПД для - людей, які постійно працюють з радіоактивними речовинами, становить 2 бер на рік. При цій дозі не спостерігається соматичних уражень, проте достовірно поки невідомо, яким чином реалізуються канцерогенний і генетичний ефекти дії. Цю дозу слід розглядати як верхню межу, до якої не варто наближатися.
3. Радіологічні проблеми в гірничовидобувній та будівельній промисловості. Застосування радіаційних технологій в харчовій промисловості.
Радіаційний контроль сировини та будівельних матеріалів
При визначенні номенклатури сировини і будівельних матеріалів, які підлягають обов'язковому радіаційному контролю, необхідно керуватись вимогами п.4.7 цих ДБН.
Обов'язковому радіаційному контролю в будівництві підлягають такі види сировини і будівельних матеріалів:
1. Природного походження - піски і глини всіх видів, гравій, крейда, сланці, вода технічна,
2. Промислового виробництва - штучні заповнювачі всіх видів, в т.ч щебінь всіх видів, в'яжучі всіх видів, арматурна і конструкційна сталь.
3. Відходи промислового виробництва - шлаки, золи, шлами, пуста порода та інші.
4. Необхідність проведення радіаційного контролю конкретного виду сировини чи матеріалу може також бути встановлена нормативним документом (ТУ чи ДСТУ) на цю продукцію.
Радіаційний контроль на підприємствах, які видобувають (виробляють) сировину та будівельні матеріали.
1. Номенклатура сировини і будівельних матеріалів, які підлягають обов'язковому радіаційному контролю, повинна бути зареєстрована в місцевому органі Держсаннагляду (Додаток 3 до ДБН В. 1.4-0.02).
2. Кожне підприємство самостійно вибирає для себе ту чи іншу систему радіаційного контролю і розробляє схему її реалізації відповідно вимогам, наведеним в розділі 5 цих ДБН,
3. Службою радіаційного контролю на підприємстві може бути власна лабораторія або пост, акредитовані в державній установі (лабораторії) радіаційного контролю. Підприємство також має право укласти договір з будь-якою лабораторією або пунктом радіаційного контролю, юридичний статус яких підтверджений документально відповідно вимогам цих ДБН.
4. Підприємство, що виробляє (видобуває) сировину і (або) будівельні матеріали, які потребують обов'язкового радіаційного контролю, повинне щороку одержувати в місцевому -органі Держсаннагляду радіаційний сертифікат (Додаток 2 до ДБН В.1.4-0.02).
Умовами для одержання (продовження) радіаційного сертифікату є:
· Результати радіоекологічних, геофізичних обстежень і підготовки виробництва, які засвідчують відсутність причин, що можуть призвести до змін проектних рішень і випуску продукції, радіаційні параметри якої перевищують встановлені граничні нормативи. У випадку невиконання цих вимог питання про функціонування підприємства вирішується за допомогою спеціалізованої проектної організації з обов'язковим узгодженням проекту з Держсаннаглядом України.
· Наявність на підприємстві діючої системи радіаційного контролю, що забезпечує можливість визначення класу продукції за регламентованим радіаційним показником, в склад якої входить служба радіаційного контролю, що відповідає вимогам п. 5.2.4.
5. Кожне підприємство, яке має радіаційний сертифікат, визначає клас продукції і видає паспорт радіаційної якості на кожну партію поставки продукції (Додаток 4 до ДБН В, 1.4-0.02).
6. У випадках перевищення нормативів відносно класу продукції за п.5.2 ДБН Б.1.4-1.01 вона повинна бути переведена в клас на розряд вище або піддана гама-спектральним дослідженням в лабораторії за допомогою високочутливої апаратури (розділ 3 Посібника).
Контроль в організаціях-постачальниках (посередниках)
Організації-постачальники (посередники), незалежно від форм власності і державної приналежності, які здійснюють в межах України постачання або посередницькі функції при постачанні сировини чи будівельних матеріалів обов'язкового радіаційного контролю, повинні одержати спеціальний дозвіл місцевих органів Держсаннагляду (Додаток 9 ДБН В. 1.4-0.02). 6.4. Контроль в організаціях-споживачах
До споживачів сировини і будівельних матеріалів відносяться:
1. Підприємства, що виробляють із сировини або будівельних матеріалів вироби, конструкції та інші елементи об'єктів будівництва.
2. Будівельні організації, які використовують сировину і будівельні матеріали безпосередньо при спорудженні об'єктів.
3. Організаціям-споживачам сировини і будівельних матеріалів обов'язкового радіаційного контролю радіаційний паспорт видається на їх вимогу постачальником. Кожен споживач самостійно розробляє ту чи іншу систему радіаційного контролю і схему її реалізації.
4. Службою радіаційного контролю споживача може бути власна лабораторія або пост, акредитовані в державній установі (лабораторії) радіаційного контролю. Споживач також має право укласти договір з будь-якою лабораторією або постом радіаційного контролю, юридичний статус яких підтверджений документально відповідно вимогам цих ДБН.
... дихальні шляхи, викликає набряк легенів. При високих концентраціях смерть наступає від 1-2 вдихів, при менших концентраціях — дихання припиняється через 5-25 хвилин.Захист від хлору: промислові фільтруючі протигази марок "В","М", цивільні протигази, військові протигази, дитячі протигази, захисні дитячі камери. При концентраціях хлору в повітрі більше ніж 8,6 мг/л потрібно використовувати тільки і ...
... – планові неявки на роботу, днів. За даними балансу робочого часу одного працівника розраховується показник «плановий % невиходів на роботу» Z=(Н пл / Ф к) х 100. Також треба враховувати, що для працівників торгової групи підприємств ресторанного господарства потрібно складати графік, який би враховував наступне: ð у четвер кількість відвідувачів більша, ніж у інші буденні дні. ...
... Чарка, стакан 4 320 2 80 400 Столові прибори (комплект) 4 320 2 80 400 Далі наведемо характеристику посуду, який будуть використовувати в комплексному закладі ресторанного господарства (табл. 2.8–2.11). Таблиця 2.8. Характеристика та призначення класичного вітчизняного порцелянового та фаянсового посуду Найменування Розміри, мм Місткість, см3, порцій Призначення ...
... падолисту у різних видів, над продовженням їх вегетаційного періоду. Отже, слід констатувати, що паркові і лісопаркові території та насадження можуть досить ефективно бути використані в шкільному курсі біології під час вивчення розділу «Рослини» і можуть бути ефективними під час організації роботи гуртків юних ботаніків, юних дендрологів, юних фенологів та ряду інших. 3.2 Шкільні лісництва ...
0 комментариев