3. Моделирование динамики яркостной температуры методом инвариантных погружений и нейронных сетей

3.1  Получение экспериментальных данных на производственной практике

Одним из типов исследований методом радиометрического дистанционного зондирования земли является полевой эксперимент. Радиометрический комплекс установленный на агробиологической станции Омского Государственного Педагогического Университета состоит из трех радиометров частот 2,73Gh, 6,0Gh, 8,15Gh с соответственной длинной волны 11 см, 5 см и 3,6 см. (рис. 1, рис. 2), устанавливаемых на передвижном штативе (раме), передвижной лаборатории и 6 экспериментальных участков размером 1,4 м * 1,4 м (рис. 3).

Рис. 3. Схема передвижного штатива с радиометрами

Рис. 4. Передвижение рамы с радиометрами с одного участка на другой


Рис. 5. Экспериментальные участки

Конструкция и размеры передвижного штатива (рамы) были выбраны исходя из удовлетворения следующим критериям [1]:

1.  Эталоны и исследуемые участки должны находиться в дальней зоне антенн радиометров

2.  Ширина главного лепестка по уровню 0,5 дб должна быть меньше геометрических размеров, эталонов и участков.

3.  Угол наклона антенн должен составлять 100

Участки №1, №2, №3, №4 являются экспериментальными участками, на которых расположены следующие виды почв: земля, загрязненная нефтью, песок, глина, чернозем, соответственно. На участке №5 расположен лист металла, а на участке №6 – емкость с водой. Участки №5 и №6 используются для калибровки оборудования, а измерения снятые с этих участков являются опорной точкой (калибровкой) для расчета яркостных температур почвы участков №1 – №4.

Штатив (рама) передвигается с одного на другой участок, измерения проводятся последовательно радиометрами с частотой 5 Gh, затем 11 Gh, затем 3,6 Gh.

При калибровке радиометров используются следующие эталоны излучения: излучения неба, отраженное металлическим листом, излучение гладкой водной поверхности, излучение поглощающего покрытия. Размеры эталонов должны превышать размеры пятна, излучающего в главный лепесток, чтобы дифракционными явлениями на краях образцов можно пренебречь.

В ходе эксперимента замерялись: время, температура окружающей среды, температура слоя почвы на глубине 0,5 см и 2 см, а также измерялась яркостная температура почв.

Дважды в день брались пробы почв на влажность: поверхностный слой 0–1 см, 1–2 см, и 3–4 см.

Исследуемыми объектами являлись участки №2 и №3, песчаная и глинистая почва соответственно (рис. 4; рис. 5).

Рис. 6. Песчаная почва. Участок №2

Рис. 7. Средний суглинок. Участок №3

Из полученных данных видно, что почти одинаковые в оптическом диапазоне почвы, кардинально отличаются по физическим свойствам.


Таблица 1. Гранулометрический состав почв (% от массы сухой почвы)

Размер фракций, мм
Почва 1–0,25 0,25–0,05 0,05–0,01 0,01–0,005 0,005–0,001 <0,001 <0,01
Песок(№2) 36,1 43,4 11,4 5,5 1,4 0,9 1,3
Глина (№3) 0,80 27,24 28,03 3,86 5,22 34,80 43,88

Был проведен цикл измерений в течении четырех дней яркостной температуры почвы «сухая-влажная-сухая». Цикл измерений состоит из 39 точек, для трех радиометров разной частоты (и соответственно разной глубины проникновения в почву). Измерения на участках проводятся между двумя опорными точками: калибровкой металлом и водой.

3.2  Постановка задачи. Поиск алгоритма решения

Задачей построенной нейронной сети должно быть восстановление параметров почв по экспериментальным данным значения яркостной температуры с радиометров различной частоты в момент экспериментального получения проб влажности почв.

Для моделирования методом Нейронных сетей используются несколько программ, среди них прикладной пакет для MathLab 6.1, Statistica Neural NetWorks, NNMath 3.1 и др. Будем использовать программы MathLab 6.1, Statistica Neural NetWorks, выбранные за простоту работы и возможности настройки нужной модели.

В общем случае, для получения алгоритмов и моделей выполняется следующее:

1.  Определяется изучаемый класс объектов (представленный входными и выходными данными).

2.  Для этого класса выбирается настраиваемая модель (модель, параметры которой можно изменить), удовлетворяющая определенным критериям и требованиям.

3.  Выбирается оценка качества идентификации (потери, характеризующие различие между выходными величинами объекта и модели).

4.  Формируется алгоритм идентификации, который, изменяя параметры модели, минимизирует потери.

Выбор и разработка моделей и алгоритмов требуют серьезных усилий для экспериментального исследования и сравнения с уже ранее предложенными. В то же время это предоставляет большую свободу в выборе направления в науке, знания которой будут привлекаться для создания новых моделей и алгоритмов.

Будем пользоваться двумя подходами в решении поставленной задачи:

1.  Используем модель двухслойного персептрона, и поэтапно увеличиваем количество нейронов на каждом слое с 3 до 5, параметры которых оптимально подобраны в исследовании[15].

2.  Функция автоматического подбора параметров, которая присутствует в программе Statistica Neural NetWorks и работает на основе анализа количества и вида входных и выходных данных.

Рис. 8. Двухслойный персептрон с одним скрытым слоем и 3 нейронами на каждом слое


Рис. 9. Двухслойный персептрон с одним скрытым слоем и 5 нейронами на каждом слое

Рис. 10. Нейронная сеть построенная методом автоматического подбора параметров

Радиометрическое исследование природной среды и восстановление требуемых параметров выполняется в работах. С учетом предлагаемой в рефракционной модели КДП почв связь между радиоизлучательной способностью почвогрунта и его КДП может быть разрешена в явном виде относительно объемной влажности. При этом решение содержит ряд априорно задаваемых параметров. Входными данными будут являться яркостные температуры, полученные при теоретическом расчете методом инвариантного погружения. Выходными данными являться параметры почв: объемная влажность, уровень слоя, и КДП почвы (при анализе которой можно определить класс почвы).

В решении поставленной задачи будем считать отсутствие как шума, создаваемого растительностью (т.к. участки в эксперименте были подготовлены и очищены от растительности), так и техногенного шума. При наличии же таковых, представляется возможным создание комплекса нейронных сетей, одни из которых будут отвечать за отчистку радиометрического сигнала от шумов, другая – решать основную задачу, в противном случае целесообразно использование вейвлет фильтров для отчистки сигнала.

3.3  Метод инвариантного погружения. Теоретический расчет. Режим обучения

Метод инвариантного погружения берет за основу слоистость почвы и различное влагосодержание в различных слоях почвы. Слоистая модель по Башаринову А.Е.

Данная модель содержит следующие допущения:

1.  Излучение считается некогерентным.

2.  Нет ослабления излучения между поверхностью и антенной.

3.  Яркость неба считается изотропной и имеет значение 3К.

4.  Влажность и температура считаются функциями только глубины.

5.  Диэлектрические и тепловые свойства почв постоянны в слоях определённой толщины.

6.  Поверхность почвы считается гладкой. (растительность отсутствует)

Также будем считать, что диэлектрическая проницаемость имеет комплексный вид, тем самым рассмотрим наиболее общий случай.

С увеличением глубины, диэлектрическая проницаемость, а также влажность увеличивается.

Эта модель рассматривает тепловое излучение слоисто-неоднородных неизотермических детерминированных сред с произвольной величиной поглощения. Диэлектрическая проводимость имеет общий комплексный вид:

Пусть температура слоёв имеет следующую зависимость:

,

где z – глубина почвенных слоёв

Для расчета КДП почвы (e) в работе используется рефракционная модель диэлектрических свойств смесей. Она представляет собой описание влажностной зависимости диэлектрической проницаемости почв. Модель является наиболее успешной при работе в диапазонах СВЧ, учитывает двойственность диэлектрических свойств почв, определяемых содержанием связанной и свободной воды [15].

Рис. 11. Слоистая модель по Башаринову А.Е.


Данная модель учитывает связь свободных и связанных молекул воды в почвах.

Для обучения нейронной сети были использованы данные теоретических расчетов по программе на базе Microsoft Excel, рассчитывающей яркостную температуру по данным КДП полученным, при моделировании методом инвариантного погружения в лаборатории Радиометрического зондирования Земли Омского Государственного Педагогического Университета на основе исследования [15].

Коэффициент диэлектрической проницаемости почв также используется в режиме обучения и восстанавливается по яркостным температурам радиометров различной частоты в нейронной сети с целью классификации типа почв.

Таблица 2. Пример обучающей выборки для соотношений параметров песчаной почвы и яркостных температур при различных частотах радиометра

W, влажность Е, КДП почвы dz, глубина погружения Tf, яркост. Темп. для f=2,73 Gh Tf, яркост. Темп. для f=6,0 Gh Tf, яркост. Темп. для f=8,15 Gh
0,02 2,88 0,50 291,57 291,63 291,68
0,04 3,20 0,75 291,15 291,18 291,23
0,06 3,54 1,00 289,89 289,85 289,85
0,08 4,07 1,25 288,61 288,46 288,37
0,10 4,83 1,50 288,47 288,32 288,22
0,12 5,67 1,75 288,25 288,11 288,01
0,14 6,56 2,00 287,98 287,84 287,74
0,16 7,53 2,25 287,66 287,54 287,44
0,18 8,56 2,50 287,32 287,20 287,10
0,20 9,65 2,75 286,95 286,83 286,75
0,22 10,82 3,00 286,56 286,45 286,37
0,24 12,04 3,25 286,15 286,05 285,97
0,26 13,34 3,50 285,73 285,64 285,56
0,28 14,70 3,75 285,30 285,21 285,14
0,30 16,12 4,00 284,86 284,78 284,71
0,32 17,61 4,25 284,41 284,34 284,28
0,34 19,17 4,50 283,96 283,89 283,83
0,36 20,79 4,75 283,50 283,43 283,38
0,38 22,48 5,00 283,04 282,98 282,92
0,40 24,24 5,25 280,48 280,11 279,82

Количество обучающих данных было 120 измерений, что в 5 крат больше количества связей в двухслойном персептроне с 3 нейронами на каждом слое. Количество эпох обучения равнялось 100 в один период установления весов.

Рис. 12. Расчет весов в зависимости от количества эпох при обучение нейронной сети, созданной методом автоматического подбора параметров

Рис. 13. Расчет весов в зависимости от количества эпох обучения при обучение нейронной сети двухслойного персептрона методом обратного распространения ошибки


Рис. 14. Расчет весов в зависимости от количества эпох обучения при обучение нейронной сети двухслойного персептрона методом сопряженного градиента

Из рисунков видно, что наиболее быстро «обучаемой» нейронной сетью, является двухслойный персептрон, устанавливающий параметры весов методом сопряженного градиента. При увеличении количества нейронов на слоях нейронной сети период становления увеличивается во всех вышеприведенных методах обучения нейронной сети.


Информация о работе «Моделирование динамики яркостной температуры земли методом инвариантного погружения и нейронных сетей»
Раздел: Физика
Количество знаков с пробелами: 63986
Количество таблиц: 8
Количество изображений: 15

0 комментариев


Наверх