СОЕДИНЕНИЕ ОПТИЧЕСКИХ ВОЛОКОН


Соединение оптических волокон является наиболее ответственной операцией при монтаже кабеля, предопределяющей качество и дальность связи по ВОЛС. Соединение волокон и монтаж кабелей производятся как в процессе производства, так и при строительстве и эксплуатации кабельных линий.

Монтаж подразделяется на постоянный (стационарный) и временный (разъемный).

Постоянный монтаж выполняется на стационарных кабельных линиях, прокладываемых на длительное время, а временный - на мобильных линиях, где приходится неоднократно соединять и разъединять строительные длины кабелей.

Соединители оптических волокон, как правило, представляют собой арматуру, предназначенную для юстировки и фиксации соединяемых волокон, а также для механической защиты сростка.

Основными требованиями к ним являются:

- простота конструкции;

- малые переходные потери;

- устойчивость к внешним механическим и климатическим воздействиям;

- надежность.

Дополнительно к разъемным соединителям предъявляется требование неизменности параметров при повторной стыковке.

Потери, вносимые соединением оптических волокон в тракт передачи кабеля, делятся на две группы: внешние и внутренние.

Внешними называются потери, связанные с особенностями метода соединения, в том числе, с подготовкой концов волокон, и включающие в себя поперечное смещение сердечника, разнесение торцов, наклон осей, угол наклона торца волокна, френелевские отражения.

Внутренними называются потери, связанные со свойствами самого волокна и обусловлены, например, вариациями диаметра сердечника, числовой апертуры, профиля показателя преломления, некруглостями сердечника, неконцентричностью сердечника и оболочки.

Внутренние потери. Внутренние потери являются следствием соединения двух неодинаковых волокон, обладающих, в основном, различными диаметрами и числовой апертурой.

В многомодовых стекловолокнах внутренние потери зависят от направления распространения света (рис. 1).

Рис. 1

При распространении света слева-направо потери на стыке равны нулю, при обратном направлении распространения света часть его переходит в оболочку 50 мкм волокна и теряется.

Данные потери зависят от характера распределения оптической мощности по торцу волокна. При этом различают однородное распределение мощности, когда она одинакова во всех точках торца волокна, и равновесное распределение, когда мощность сконцентрирована в центре сердечника световода. В табл. 1 приведены значения равновесных внутренних потерь на стыке различных многомодовых световодов.


Таблица 1

Принимающее Потери (дБ)
волокно с Передающее волокно с диаметром сердечника (мкм)

с диаметром

сердечника (мкм)

50

(NA=0,20)

50

(NA=0,23)

62,5

(NA=0,275)

85

(NA=0,26)

100

(NA=0,29)

50 (NA=0,20) 0 0,42 2,1 3,8 5,6
50 (NA=0,23) 0 0 1,5 3,1 4,8
62,5 (NA=0,275) 0 0 0 0,96 2,3
85 (NA=0,26) 0 0 0,5 0 0,8
100 (NA=0,29) 0 0 0 0 0

В одномодовых световодах внутренние потери не зависят от направления передачи и определяются только несоответствием диаметров поля моды сопрягаемых волокон ( рис. 2).

Рис. 2

Волокно 1 с диаметром поля моды  излучает свет в виде конуса с углом  от торца волокна. Учитывая, что диаметр поля поля волокна обратно пропорционален углу приема излучения ( ) волокно 1 излучает свет в больший конус, чем принимает волокно 2, и часть излучения теряется. И наоборот, при распространении света от волокна 2 к волокну 1 часть света распространяется вне сердечника волокна 1 и тоже теряется.

Таким образом, потери из-за различия диаметров поля моды и конусов приема одинаковы в обоих направлениях и рассчитываются по формуле:

, дБ.

Значения равновесных внутренних потерь на стыке наиболее распространенных одномодовых волокон с несмещенной дисперсией приведены в табл. 2.

Таблица 2

Потери (дБ)
Волокно 2
Волокно 1 Выровненная оболочка

Вдавленная

оболочка

2=10,0 мкм

2=9,5 мкм

2=8,8 мкм

Выровненная оболочка

2=10,0 мкм

2=9,5 мкм

0

0,01

0,01

0

0,07

0,02

Вдавленная оболочка

2=8,8 мкм

0,07 0,02 0

 

Внешние потери. Внешние потери обусловлены четырьмя основными причинами: радиальное смещение волокон, угловое смещение, осевое смещение и качество торцов. Кроме того, необходимо учитывать деформации сердечника и соответствие между показателями преломления волокон. Для получения малых потерь на стыке торцов волокон должны находиться в тесном физическом контакте друг с другом, или зазор между ними должен быть заполнен веществом (иммерсионной жидкостью) в точности соответствующим показателям преломления сердечников волокон. На рис. 3 представлены возможные дефекты сопряжения оптических волокон и графики, отражающие количественную оценку внешних потерь.

В реальных соединениях необходимо учитывать воздействие суммарных, т. е. полных потерь, определение которых зависит от типа сопрягаемых волокон.

В многомодовых световодах полные потери на стыке волокон обычно меньше, чем сумма отдельных внутренних и внешних составляющих. Принято считать, что потери на стыке многомодовых волокон не зависят от длины волны. В действительности из-за несоответствия внутренних параметров волокон на стыке возникают пульсации (осцилляции) потерь, которые присходят вследствии того, что принимающее волокно не может принять все моды от передающего (рис. 4).

Осцилляции потерь на стыке возрастают с увеличением длины волны.

Рис. 3

а) - радиальное смещение;

б) - угловое смещение;

в) - осевое смещение;

г) - качество торцов

Кроме того, потери на стыке зависят от относительного положения стыков. Стыки имеют тенденцию влиять на распределение мощности, и поэтому потери на конкретном стыке зависят от потерь на предыдущем (рис. 5).

Если волокно А достаточно длинное, то мощность на его конце имеет равновесное распределение. Осевое смещение на первом стыке вызывает потери части мощности на конце распределения и перераспределяет мощность к внешним краям сердечника второго волокна. Если волокно Б короче, чем требуется для восстановления равновесного распределения мощности, то осевое смещение на втором стыке вызовет большую, чем на первом стыке потерю мощности.

В одномодовых волокнах полные потери на стыке практически соответствуют сумме внешних и внутренних потерь. Более того, такие волокна имеют только одну моду, и поэтому на их стыке отсутствуют пульсации, которые наблюдались в многомодовых волокнах. При отсутствии отражения потери на стыке монотонно уменьшаются с ростом длины волны, что обусловлено ростом диаметра поля моды.

Таким образом, потери на стыке одномодовых волокон проще в анализе, измерении и воспроизведении, чем на стыке многомодовых волокон.

Если в процессе соединения оптических волокон присутствует хотя бы одно из рассмотренных смещений, то часть оптической мощности отражается от места соединения. Такое явление получило название Френелевского отражения. Отражение на стыке оптических волокон приведено на рис. 6.

а) б)

Рп Рвых Рп R1 R2  

Ротр Рвых

Ротр

n1 n2

волокно 1 волокно 2 волокно 1 зазор волокно 2

Рис. 6

Отражение на границе раздела двух сред (рис. 6а) характеризуется параметром R, который представляет собой отношение мощности отраженной волны к мощности падающей волны, и рассчитывается по формуле:


,

где n1 и n2 - показатели преломления соответствующих сред.

В результате мощность на выходе волокна уменьшается по сравнению с падающей мощностью. Такие потери за счет отражения получили название Френелевских потерь, рассчитываемых по формуле:

Например, потери на границе волокно-воздух, учитывая, что n1=1,46, a n2=1, составляют 0,15 дБ.

При наличии осевого смещения различают две границы раздела (рис. 6б). Тогда параметр R рассчитывается по формуле:

,

где R1 и R2 - параметры отражения на соответствующей границе;

z- ширина зазора.

Взаимодействие многократных отражений приводит к увеличению потерь на стыке, которые рассчитываются по формуле:


, дБ.

соединение оптическое волокно

Соединения волокон, кроме того, вызывает изменение во времени взаимодействие передаваемых мод друг с другом, что приводит к флуктуации оптической мощности и появлению, так называемых, межмодовых шумов. Межмодовые шумы проявляются как в многомодовых, так и в одномодовых волокнах.

Взаимодействие мод, зависящее от времени, происходит вследствие ряда причин: изменение во времени длины волны излучения и параметров лазеров, характеристик волоконного световода.

Модовый шум можно увидеть, заглянув в торец относительно короткого многомодового волокна, возбуждаемого лазером. Различимые темные и светлые пятна - спеклы- являются следствием интерференции различных мод. Изменение спекл-картины на несовершенном стыке приводит к изменению потерь.

Интерференция мод зависит от временных соотношений между модами, поэтому лазерные источники излучения, способные сохранять временные свойства своего излучения, создают больший межмодовый шум, чем некогерентные источники излучения (светодиоды). С увеличением длины волоконного световода спекл-картина исчезает, что способствует уменьшению межмодовых шумов.

В идеальных одномодовых световодах межмодовый шум отсутствует. Однако, реальные одномодовые волокна допускают распространение моды второго порядка, которая возникает на стыках сопрягаемых волокон. Благодаря разнице во времени распространения основной моды и моды второго порядка происходит интерференция мод и появление межмодового шума.

Соединение волокон. В процессе монтажа оптической магистрали осуществляется стационарное (неразъемное) соединение отдельных строительных длин кабеля. При вводе оптического кабеля в здание или репиторные пункты для многократного соединения-разъединения с оптоэлектонным оборудованием применяются разъемные соединители - коннекторы.

Соединение оптических волокон осуществляется в следующей последовательности.


Информация о работе «Соединение оптических волокон»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 22917
Количество таблиц: 5
Количество изображений: 11

Похожие работы

Скачать
100238
3
16

... большое количество способов компенсации дисперсии. Их можно разделить на следующие три класса [7]: -      способы компенсации дисперсии, основанные на управлении пространственным распределением дисперсии волоконно-оптической линии связи (ВОЛС) для обеспечения нулевого суммарного (интегрального) значения дисперсии для всей линии; -      способы компенсации дисперсии, основанные на управлении ...

Скачать
50319
1
10

... оптических линий; оптические рефлектометры OTDR (Optical Time Domain Reflectometer); локаторы дефектов. ЗАКЛЮЧЕНИЕ В качестве заключения, будет целесообразно рассмотреть достоинства и недостатки волоконно-оптических линий связи. Достоинства Широкая полоса пропускания - обусловлена чрезвычайно высокой частотой несущей 1014Гц. Это дает потенциальную возможность передачи по одному оптическому ...

Скачать
68123
8
53

... низкую стабильность. Рисунок 2.28 – Соединитель VF-45 Таблица 2.6 Некоторые параметры основных типов малогабаритных оптических соединителей 3. ПРОЕКТИРОВАНИЕ ИНФОРМАЦИОННО-СПРАВОЧНОЙ ПОДСИСТЕМЫ САПР КОНСТРУКТОРСКО-ТЕХНОЛОГИЧЕСКОГО НАЗНАЧЕНИЯ   3.1 Проектирование хранилища данных Рисунок 3.1- Состав и взаимосвязь задач работы «Проектирование данных хранилища» При разработке ...

Скачать
67879
12
0

... большие габариты, малый КПД, потребность во внешнем устройстве накачки являются основными причинами, по которым этот источник не используется в современных ВОСП. Практически во всех волоконно-оптических системах передачи, рассчитанных на широкое применение, в качестве источников излучения сейчас используются полупроводниковые светоизлучающие диоды и лазеры. Для них характерны в первую очередь ...

0 комментариев


Наверх