2.2 Математичні моделі на рівні функціональних ланок системи
Розглянемо деякі особливості математичного опису функціональних ланок на прикладі лінійних інерційних ланок. Для їх опису часто використовуються: імпульсна характеристики, перехідна характеристики, комплексна частотна характеристики ланки.
При використанні імпульсної характеристики лінійної інерційної ланки вихідний сигнал через вхідний сигнал записується у вигляді інтегралу Дюамеля
. (6)
Для опису лінійної інерційної ланки може бути також використана перехідна характеристика, що зв'язана з імпульсною характеристикою наступним співвідношенням
. (7)
Поряд з часовим описом може також використовуватися частотний опис ланки у вигляді частотної характеристики (частотного коефіцієнту передачі) , яка однозначно зв'язана з імпульсною характеристикою перетворенням Фур'є
. (8)
При цьому спектр вихідного сигналу визначається через спектр вхідного сигналу та частотну характеристику ланки
. (9)
При переході до дискретного часу та кінечного інтервалу спостереження сигналів зв'язок між входом і виходом лінійної системи описується дискретною згорткою, яка фактично визначає роботу нерекурсивного цифрового фільтру
. (10)
де - відліки вхідного дискретного сигналу, - відліки імпульсної характеристики.
У випадку спектрального зображення сигналів відповідні перетворення у функціональних ланках виконуються згідно (9). Для сигналів з дискретним часом спектр визначається через дискретне перетворення Фур'є (ДПФ)
. (11)
Відліки спектру сигналу обчислюються для дискретних значень частот
. (12)
Перехід до відліків спектру сигналу проводиться за допомогою оберненого дискретного перетворення Фур'є
. (12)
При моделюванні сигналів значної розмірності доцільно використовувати швидкі алгоритми перетворення Фур'є, які дають можливість суттєво зменшити обсяг обчислення на ЕОМ при виконанні прямого та оберненого ДПФ.
В системах зв'язку використовуються багато різних видів лінійних та нелінійних, інерційних та безінерційних ланок. Для прикладу можна навести приклади типових ланок: генератори сигналів заданої форми; амплітудний, фазовий, частотний модулятор та детектор; інтегратор; корелятор; низькочастотний, високочастотний, полосовий, узгоджений фільтр; перемножувач частоти сигналів та інші. В табл. 1 приведено опис деяких функціональних ланок. Для описування ланок необхідно знати вид функційного перетворення . Якщо вид функціонального перетворення досить складний, його апроксимують простими функціями. В ряді випадків цю функцію перетворення розкладають в ряд Фур'є, Тейлора, а потім виконують необхідні перетворення.
Слід зазначити, що при моделюванні можуть бути використані також ймовірнісні моделі функціональних ланок та системи в цілому, що описують функціювання у реальних умовах роботи систем зв’язку.
Таблиця 1 - Деякі основні типи функційних ланок
Назва ланки | Оператор перетворення | Назва перетворення | Зображення на функційній схемі |
1 | 2 | 3 | 4 |
1. Лінійні безінерційні ланки | Повторення інвертування підсилення | ||
2. Лінійні інерційні ланки | затримка сигналу на інтервал інтегрування диференціювання фільтрування | ||
3. Нелінійні безінерційні ланки | Нелінійне функційне перетворення | ||
Генератори | Генерування сигналу | ||
5. Модулятор | моделювання сигналу-носія повідомленням |
... і провести моделювання за початковими даними; · розробити програмне забезпечення для статистичного моделювання сітьового графіка за початковими даними; · зробити висновки по роботі та досягнутим результатам. 1 ЗАГАЛЬНА ХАРАКТЕРИСТИКА ПРЕДМЕТНОЇ ОБЛАСТІ 1.1 Дослідження процесу побудови судна 1.1.1 Аналіз процесу побудови судна як об’єкта ...
... ійна діяльність не є самоціллю. Тому, визначаючи місце і роль закону пропорційності, слід орієнтуватися в першу чергу на основний закон організації. Досягнення пропорційності як би забезпечує саму можливість отримання синергетичного ефекту. 3. ПРИНЦИПИ ОРГАНІЗАЦІЇ 3.1 Сутність і зміст принципів організації В попередньому розділі нами встановлено, що пізнання законів організації дозволя ...
... общин, де кожний буде зобов'язаний трудитися. М.А. Бакунін дотримувався ідей анархізму, бачивши у владі причину експлуатації. Один з феноменів російської науки - плідна розробка ідей економіко-математичного моделювання, заснована на базі як „чистих” математиків, що направили свої зусилля в економіку, так і розробок професійних економістів. Перші російські економісти-математики (Ю.Г. Жуковській, ...
... практ. конф. Хмельницький, 17 травня 2007 р. – Хмельницький: Хмельницький університет управління та права, 2007. – С. 206-209. – 0,13 друк. арк. АНОТАЦІЯ Корепанов О.С. Статистичне прогнозування кон’юнктури аграрного ринку в Україні. – Рукопис. Дисертація на здобуття наукового ступеня кандидата економічних наук за спеціальністю 08.00.10 – Статистика. - Державна академія статистики, обліку та ...
0 комментариев