2. Определение числа пазов статора, витков в фазе обмотки и сечения провода обмотки статора
2.1 Определим предельные значения: t1max и t1min [1] рисунок 9.26. При и , , .
2.2 Число пазов статора:
, (2.1)
(2.2)
Окончательно число пазов должно быть кратным значению числа пазов на полюс и фазу: q. Примем , тогда
, (2.3)
где m - число фаз.
2.3 Окончательно определяем зубцовое деление статора:
(2.4)
2.4 Предварительный ток обмотки статора
(2.5)
2.5 Число эффективных проводников в пазу ( при условии ):
(2.6)
2.6 Принимаем число параллельных ветвей , тогда
(2.7)
2.7 Окончательное число витков в фазе обмотки и магнитный поток :
, (2.8)
(2.9)
2.8 Определим значения электрических и магнитных нагрузок:
, (2.10)
(2.11)
Значения электрической и магнитных нагрузок незначительно отличаются от выбранных графически.
2.9 Выбор допустимой плотности тока производится с учётом линейной нагрузки двигателя:
, (2.12)
где - нагрев пазовой части обмотки статора, определим графически [1] рисунок 9.27, д. При .
2.10 Рассчитаем площадь сечения эфективных проводников:
(2.13)
Принимаем , тогда [1] таблица П-3.1 , , .
2.11 Окончательно определим плотность тока в обмотке статора:
(2.14)
3. Расчёт размеров зубцовой зоны статора и воздушного зазора
3.1 Предварительно выберем электромагнитные индукции в ярме статора BZ1 и в зубцах статора Ba. При [1] таблица 9.12 , а .
3.2 Выберем марку стали 2013 [1] таблица 9.13 и коэффициент заполнения сталью магнитопроводов статора и ротора .
3.3 По выбранным индукциям определим высоту ярма статора и минимальную ширину зубца
, (3.1)
(3.2)
3.4 Подберём высоту шлица и ширину шлица полузакрытого паза. Для двигателей с высотой оси , мм. Ширину шлица выберем из таблицы 9.16 [1]. При и , .
3.5 Определим размеры паза:
высоту паза:
, (3.3)
размеры паза в штампе и :
Выберем , тогда
, (3.4)
, (3.5)
высоту клиновой части паза :
(3.6)
Рисунок 3.1. Паз спроектированного двигателя с короткозамкнутым ротором
3.6 Определим размеры паза в свету с учётом припусков на шихтовку и сборку сердечников: и , таблица 9.14 [1]:
ширину, и :
, (3.7)
, (3.8)
и высоту :
(3.9)
Определим площадь поперечного сечения корпусной изоляции в пазу:
, (3.10)
где - односторонняя толщина изоляции в пазу, .
Расчитаем площадь поперечного сечения прокладок к пазу:
(3.11)
Определим площадь поперечного сечения паза для размещения проводников:
(3.12)
3.7 Критерием правильности выбранных размеров служит коэффициент заполнения паза , который приближённо равен .
, (3.13)
таким образом выбранные значения верны.
4. Расчёт ротора
4.1 Выберем высоту воздушного зазора d графически по [1] рисунок 9.31. При и , .
4.2 Внешний диаметр короткозамкнутого ротора:
(4.1)
4.3 Длина ротора равна длине воздушного зазора: , .
4.4 Число пазов выберем из таблицы 9.18 [1], .
4.5 Определяем величину зубцового деления ротора:
(4.2)
4.6 Значение коэффициента kB для расчёта диаметра вала определим из таблицы 9.19 [1]. При и , .
Внутренний диаметр ротора равен:
(4.3)
4.7 Определим ток в стержне ротора:
, (4.4)
где ki - коэффициент, учитывающий влияние тока намагничивания и сопротивления обмоток на отношение , определим графически при ; ;
- коэффициент приведения токов, определим по формуле:
(4.5)
Тогда искомый ток в стержне ротора:
4.8 Определим площадь поперечного сечения стержня:
, (4.6)
где - допустимая плотность тока; в нашем случае .
4.9 Паз ротора определяем по рисунку 9.40, б [1]. Принимаем , , .
Магнитную индукцию в зубце ротора выберем из промежутка [1] таблица 9.12. Примем .
Определим допустимую ширину зубца:
(4.7)
Расчитаем размеры паза:
ширинуb1 и b2:
, (4.8)
, (4.9)
высоту h1:
(4.10)
Рассчитаем полную высоту паза ротора hП2:
(4.11)
Уточним площадь сечения стержня :
(4.12)
4.10 Определим плотность тока в стержне J2:
(4.13)
Рисунок 4.1. Паз спроектированного двигателя с короткозамкнутым ротором
4.11 Рассчитаем площадь сечения короткозамыкающих колец qкл:
, (4.14)
где - ток в кольце, определим по формуле:
, (4.15)
где ,
тогда
,
, (4.16)
4.12 Рассчитаем рамеры замыкающих колец , и средний диаметр кольца:
, (4.17)
(4.18)
Уточним площадь сечения кольца:
, (4.19)
(4.20)
... на вале ротора, далее, посредством щеточного контакта, к обмотке ротора можно подключить пусковой реостат. В данном курсовом проекте речь пойдет о трехфазном асинхронном двигателе с короткозамкнутым ротором. 1. АНАЛИТИЧЕСКИЙ ОБЗОР 1.1 Современные серии электрических машин В 70-е годы была разработана и внедрена серия электродвигателей 4А, основным критерием при проектировании которой ...
... 218) (219) (220) (221) Пусковые параметры: (222) (223) (224) (225) (226) (227) (228) Результаты расчёта токов в пусковом режиме асинхронного двигателя с КЗ ротором учетом влияния эффекта вытеснения тока представлены в таблице 3.5.3 и 3.5.4. Таблица 3.5.3 – Расчет пусковых характеристик асинхронного двигателя с КЗ ротором учетом эффекта вытеснения тока и насыщения от ...
... 2,54 2,45 2,59 Графики пусковых характеристик спроектированного двигателя с короткозамкнутым ротором изображены на рисунке 6 и рисунке 7. Рисунок 6 – Зависимость Рисунок 7 – Зависимость Спроектированный асинхронный двигатель удовлетворяет требованиям ГОСТ как по энергетическим показателям (КПД и ), так и по пусковым характеристикам. 9. ТЕПЛОВОЙ РАСЧЁТ Превышение температуры ...
... Потери, не изменяющиеся при изменении скольжения : Pст. + Pмех. = 727,12+125,6 = 852,17 Вт. Таблица 1. Рабочие характеристики асинхронного двигателя. Параметр Ед-ца Скольжение 0,005 0,01 0,015 sн=0,019 0,02 0,025 0,03 a’×r’2/s Ом 48,53 24,27 16,18 12,77 12,13 9,71 8,09 b’×r’2/s Ом 0 0 0 0 0 0 0 R = a + a¢*r¢2/s Ом 49,04 ...
0 комментариев