3 рівень

Оптичні датчики наближення - Серія PXO 400

Кубічний корпус із прес матеріалу, IP65, c кабелем або штекером M8

Світловий датчик дії, що відбиває; енергетичний датчик

Дальність дії 60 cm (регулюється пационтометром)

Світловий датчик дії, що відбиває, зі зняттям тла

Дальність дії від 3 до 15 см (регулюється пационтометром)

Фотореле дії, що відбиває

Дальність дії 2 м (регулюється пационтометром)

Поставляється без відбивача

Фотореле односпрямованої дії

Дальність дії 6 м (регулюється пационтометром)

Датчик BERO для пластмасових световодів

Дальність дії залежить від полотна

Робоча напруга DC 24 В

Електронний вихід pnp або npn

Поставляється без кріпильного матеріалу

Оптичні датчики відрізняються високою точністю й швидкодією, простотою настроювання з використанням режимів навчання або за допомогою потенціометра, простотою обслуговування.

Особливості:

Надзвичайна точність і швидкість

Висока продуктивність навіть на більших відстанях

Невеликого, компактного виконання

Ступінь захисту аж до IP68

Установлювана дальність дії

Функція навчання (Teachin)

Установка робочих зон виявлення (відстаней)

Чутливість оптичних датчиків регулюється убудованими потенціометрами. Обертання потенціометра за годинниковою стрілкою збільшує чутливість датчика. Потенціометр не має фіксаторів крайніх положень.

Зв'язок із ПЛК

Для реалізації істотно більшої гнучкості й надійності датчиків завдяки інтелектуальному зв'язку із ПЛК використаний IQSense. Однаковий обмін даними дає багато переваг, як для конструкції установки, так і для її експлуатації.

А функція IntelliTeach дозволяє слюсарям Кипиа досягти швидкого уведення в експлуатацію, тому що всі настроювання для пристроїв IQSense можуть бути виконані за допомогою ПЛК. Значення, один раз установлені на одному датчику, без проблем можуть бути передані іншим датчикам. Датчики можуть бути замінені під час роботи без яких-небудь додаткових дій, тому що ПЛК автоматично відновлює всі настроювання датчика.

Крім того, IQSense уможливлює виконання системної діагностики по каналах. Автоматично сигналізується про обрив проведення, короткому замиканні, неправильному настроюванні або виході з ладу модуля або датчика, і вдається уникнути помилок параметризації. Тому з'являється можливість скоротити часи простою й збільшити коефіцієнт готовності установки.

Саме основне

Лихословити за допомогою STEP 7

Обмін даними між датчиками й ПЛК SIMATIC PLC через недорогий двожильний кабель

Параметризація датчиків через керування (IntelliTeach)

Системна діагностика аж до датчика сигналів скорочує часи простою

Заміна датчиків під час роботи без повторної параметризації


Технічні дані:

Робочий режим Мережний датчик дії, що відбиває Світловий датчик дії, що відбиває, зі зняттям тла Фотореле дії, що відбиває, з фільтром
Дальність дії см 60 (регулюється) 3.15 (регулюється) 200 (регулюється)
Стандартна вимірювальна пластинка мм 200 Ч 200 (біла) 100 Ч 100 (біла) Тип відбивача D 84
Робоча напруга (DC) В 10.36 (залишкова пульсація не більше 20 %)

Струм холостого ходу I0, макс.

мА 15

Вихідний токIe

мА 200
Частота комутації Гц 1000 500 1000
Час комутації мс 0,5 1 0,5
Частота (вид) випромінювання нм 880 (ІК) 660 (червоний) 660 (червоний, поляризований)
Светодіод
Комутаційний стан Жовтий
Резерв функціонування Зелений
Матеріал корпуса Прессматериал (PBTP, Крастин)
Ступінь захисту IP65
Діапазон температур °C 25. +55
Температурний коефіцієнт %/K 0,3
Тип 3RG70 10–.00 3RG70 14–.00 3RG70 11–.00
Робочий режим Фотореле односпрямованої дії Датчик BERO для пластмасових световодов
Дальність дії см 600 (регулюється) Залежить від волокна
Стандартна вимірювальна пластинка 100 x 100 (біла)
Робоча напруга (DC) В 10.36 (залишкова пульсація не більше 20 %)

Струм холостого ходу I0, макс.

мА 15

Вихідний токIe

мА 200
Частота комутації Гц 1000
Час комутації мс 0,5
Частота (вид) випромінювання нм 880 (ІК) 660 (червоний)
Светодіод
Комутаційний стан Жовтий
Резерв функціонування Зелений
Матеріал корпуса Пресматеріал (PBTP, Крастин)
Ступінь захисту IP65
Діапазон температур °C 25. +55
Температурний коефіцієнт %/K 0,3
Тип 3RG70 12–.00 3RG70 13–.00

Схема підключення:

Мал.05

Індуктивні датчики наближення - Серія PXI 300

Датчики наближення найпростіше й ефективне рішення для безконтактного визначення металевих об'єктів. Якщо гарний провідник електрики наближається до датчика або віддаляється від нього, то сигнал автоматично змінюється.

Ці датчики дуже надійні, тому що мають відмінну повторюваність спрацьовувань. Завдяки стійкості до механічних впливів, впливу температури, шумів, світла й води вони мають тривалий термін служби. Ми пропонуємо повний спектр продукції із широким спектром різних застосувань і діапазонів спрацьовувань.

Серія PXI300

Індуктивні датчики класифіковані відповідно до їхніх можливостей застосування або технічних особливостей:

Клас З розширеним робочим діапазоном З розширеним робочим діапазоном (AC/DC)
Число проводів 4 2
Виконання Кубічний 40 мм x 40 мм M 30 Кубічний 40 мм x 40 мм M 30
Установка в металі Заподлицо Заподлицо

Розрахункова відстань срабатыванияsn

мм 20 20
Матеріал корпуса Пресматеріал Пресматеріал
Робоча напруга
DC В 15.34 20. 320
AC В 20. 265

Споживаний струм (без навантаження)I0

при 24 В в DC мА ≤ 30 (24 В); ≤ 40 (34 В) 1,5
при 230 В в AC мА ≤ 2,0

Навантажувальна способностьIe

Тривалий режим мА 200 (≤ 50 °C); 150 (≤ 85 °C) 200
20 мс мА
Мінімальний струм навантаження мА < 2
Частота коммутацииf Гц 30 25/30 (AC/DC)
Точність репродуцирования мм 0,75 0,75
Різниця ходу H мм 0,05.3,3 0,05.3,3

Затримка готовностиtv

мс 100 100
Індикація
Комутаційний стан Жовтий светодіод Жовтий светодіод
Напруга живлення Зелений светодіод
Міри захисту
Подавл.. імпульсу
Захист від кор. з./перевантаження
Захист
Захист від обриву проведення
Захист від індуктивних впливів
Захист від радіо приборів
Ступінь захисту IP 67 IP 67

Особливості:

Компактний

Високий ступінь захисту IP67

Фактор корекцій 1

Високий ступінь чутливості

Висока частота комутації

Простота монтажу

Зручно використовувати в малих просторах

Ступінь захисту:

Ступінь захисту, відповідно до IEC 60529. Значення цифр Умови випробувань / зауваження
IP67

6 Захист від проникнення пилу. Повний захист від дотику (електрична).

7 Захист від води, коли апаратура поринає у воду при певному тиску й на певний час. При цьому вода не повинна проникати в кількості, що викликає ушкодження.

Умови випробувань:

Глибина занурення 1 м

Час 30 хв

Якщо вода або вогкість можуть проникнути через довгий період часу, то в цьому випадку повинні бути використані пристрої зі ступенем захисту IP68.

Функції:

Індуктивні датчики BERO є безконтактним датчиком положення, не утримуючих деталей, підданих механічного зношування, і практично нечутливим до впливу навколишнього середовища.

В датчику BERO створюється високочастотне змінне поле, що випромінюється з „активної поверхні" датчика BERO. Просторові розміри цього змінного поля визначають „дальность дії" приладу. При наближенні матеріалу з гарної електричної й/або магнітною провідністю поле послабляється. Обоє стану (поле ослаблене або не ослаблене) аналізуються в датчику BERO зі зміною сигналу на виході.

Убудовані міри захисту

Захисні схеми, убудовані в більшість BERO забезпечують простоту експлуатації й захищають прилади від виходу з ладу.

Можливий захист від:

обриву проведення (контакти L і L+);

помилкового імпульсу на включення;

короткого замикання й перевантаження (DC);

піків перенапруги;

невірного підключення всіх контактів;

впливу радіотелефонів.

Захист від короткого замикання й перевантаження

Всі прилади у виконанні для постійної напруги обладнані захистом від короткого замикання й перевантаження. Короткі замикання між виходом і затискачами робочої напруги не ушкоджують безконтактний датчик і можуть бути тривалими; припустима також необмежене перевантаження. Під час короткого замикання светодіоди не працюють.

Захист від переполюсовки

Всі індуктивні безконтактні датчики захищені від будь-який переполюсовки всіх контактів.

Захист від обриву проведення

Датчик у виконанні для постійної напруги сконструйований так, що при обриві проведення будь-якого контакту BERO не видає помилкового сигналу (це не ставиться до 3RG46 і всім 4провідним BERO). Помилковий сигнал це будь-якою відмінний від 0 сигнал тривалістю більше 2 мс, струм якого більше залишкового струму.

Захист від індукційних впливів

При відключенні індуктивних навантажень вихідна напруга сильно зростає (без схеми захисту), що може привести до пробою вихідного транзистора. Тому безконтактні датчики BERO мають на виході діод Зенера, що обмежує напруга відключення безпечною величиною (3 проводний BERO).

При підключенні індуктивних навантажень > 100 мА й при цьому із частотою комутації > 10 Гц рекомендується установка нульового діода безпосередньо на навантаженні (через велику потужність втрат в убудованому діоді Зенера).

Захист від впливу радіо приборів

Чутливість до високочастотних перешкод знижена настільки, щоб виконувалося приписання IЕС 60 8013, Level3 (напруженість поля при випробуваннях 10 В/м).

Захист від електростатичного заряду

Прилади сконструйовані так, що електростатичні заряди відповідно до IEC 60 8013, Level 3 (8 кВ) не виводять їх з ладу.

Електромагнітна сумісність

Всі індуктивні датчики BERO відповідають вимогам до електромагнітної сумісності №. 89/336/ EWG. Це доводиться застосуванням стандарту EN 60 94752 і засвідчує відповідним контрольним органом.

Светодіоди

Датчики BERO (за винятком BERO для складних умов навколишнього середовища й BERO по нормах NAMUR) постачені двома светодіодами (СИД).

Жовтий СИД індуцірує комутаційний стан, тобто

при функції замикаючого контакту: BERO = СИД горить

при функції спорогенезу контакту: BERO = СИД горить

при функції замикаючого й спорогенезу контакту: BERO  = СИД горить

Зелений СИД показує наявність робочої напруги.


Технічні дані:

Загальні технічні дані
Гістерезис H

Макс. 0.2 sr

Максимальна довжина кабелю (неекранований)
AC 100 м
DC 300 м
Температура навколишнього середовища
При роботі

–25 . + 85 °C 1) 2)

При зберіганні

–40 . + 85 °C 1)

Стійкість до ударів 30 Ч g, тривалість 18 мс
Стійкість до вібрації 55 Гц, амплітуда 1 мм
коефіцієнт, Що Знижує
Нержавіюча сталь від 0.7 дo 0.9
Алюміній від 0.35 дo 0.5
Мідь від 0.2 дo 0.4
Латунь від 0.3 дo 0.6
Спадання напруги
2х жильний BERO Maкс. 8 В
3х жильний BERO Maкс. 2.5 В
4х жильний BERO Maкс. 2.5 В

1) До +70 °C з 3RG41 і 3RG46.

2) Максимальний комутаційний струм для 3х проводного BERO у нормальних умовах, при робочій температурі > 50 °C 150 м.

Розділ 4. Електропостачання споживачів лінії пакування

Основними споживачами лінія пакування гипсокартона є ланцюгові конвеєри обладнані асинхронним двигуном потужністю 5,5 кВт; а також станція обв'язки з асинхронним двигуном 0,37 кВт; плівковою станцією обладнане ПЕЧІ потужністю від 0,37 до 1,1 кВт; конвеєр ланцюгової станції 5,5 кВт; станція подвоювача пакетів обладнане 3 мя двигунами потужністю від 0,75 кВт до 11 кВт.

І як електропостачання здійснюється кабелями марки ВВГ 4/2,5, прокладених у кабельних лотках, трубках і підключені до пускачів розміщених у розподільній шафі. Распред. шафа оснащена роз'єднувачами із плавкими вставками серії А3716С, діапазон значень вставок плавких від 8 до 200 А. РШ у палі час харчується кабелем ШВВГ 4/16 довжиною 85 метрів від ЗРУ 0,4, що перебуває в ЦТП 10/0,4.

Внутрішня схема ЦТП здійснена по типі 2 категорії, така необхідність обумовлена економічною доцільністю й технічними особливостями виробництва. Трансформатори двох обмотувальні типу ТМ1000 10/0,4 кВ Таб.01 перебувають у приміщенні ЦТП, розділені цегельною перегородкою від ЗРУ. Живлення на ЦТП приходить від ГПП1 «Електромережі», повітряним способом кабелем АС150. Тр.1 і Тр.2 живляться через осередок 4 і осередок 11 відповідно. Осередок обладнаний роз'єднувачем високовольтним з ізоляційним виконанням на 10000 вольт.

Розрахункове навантаження всіх електроприймачів живлення від ТП:

P=1047 кВт;

Технічні параметри ТМ1000

Тип потужність

КТП, кВа

Номінальні струми обмоток Iном., А

Опір обмоток, Ом

Струм к.з. об

мотки НН

Iк, А

Комутаційні захисні пристрої

Тип авта.

выкл. (АВ)

Тип

захисту

Уставки

РТМ і

УМЗ Iу , А

ВН НН

Rтр.

Xтр.

ТМ1000/10В1 102 1487 0,0056 0,026 11330 А3742В УМЗ

1000

3000

Перетин кабелів приймаємо по розрахункових і припустимих тривалих навантаженнях.

Визначимо розрахунковий струм для кабелю живильного РШ і кабелю найбільш вилученого й потужного двигуна лінії, по формулі:


Найменування кабелю

Розрахунковий струм кабелю Iр.i

Марка кабелю

Перетин жили Sж, (мм2) за умовою

Sж, (мм2)

Ip.i

Sмех, SЕк

Фідерний кабель від ЗРУ0,4 до РШ

Iр (ф.к.7) = 165

КГЕШ

4 жил.

50

IS.H.=236 A

Sмех,=25

Sмех=25 мм2

Кабель АД В.П.

Iр(м)= Iном(м)=22

ВВГ

4 жил.

4

IS.H.=54 A

Sмех,=2,5

По Sмех =2,5мм2

Iр.к. = Кс УPном. i ч √3 Uном. cos ? , А

де: УPном. i – сума номінальних потужностей електроприймачів, що харчуються по даному кабелі, кВт;

Uном. - номінальна напруга електроприймачів, кВ

Т.к. у нас група електроприймачів з Uном. = 380 В, те доцільно застосувати спрощену формулу для швидкості розрахунку:

Iр.к. ≈ 1,4∙ УPном. i, А

Ф.К. від ЗРУ0,4 до РШ: Iр.к. ≈ 1,4 118 = 165,2 А

Кабель ПЕЧІ В.П.: Iр.к. = Iном. = 22 А

Необхідно перевірити прийняті кабелі мережі на втрати напруги в умовах нормального режиму роботи й пуску.

Наведена довжина кабельної лінії перебуває по формулі:

L*=Уℓi Kп.i, км

де, ℓi – фактичні довжини кабелів різних перетинів від базової розрахункової крапки, де визначене Sк;

Kп.i – коефіцієнти примари кабелів до кабелю перетином 50 мм2, обумовлені по табл. 1.8;

n - число ділянок кабелю, що включаються послідовно .

L*= 2,6∙ 0,43 = 1,118км

Визначення наведених довжин кабелів:

Найменування кабелю

Перетин

силової жили Sж , (мм2)

Фактична довжина ℓi,км

Коефіцієнт

примари Kп

Наведена довжина кабелю , км

В мережі ВН

*вн

В мережі НН

*нн

Марки АС150 від ЦПП до ТП1000

Фидый від ТП дорш

Від РШ до АД маслостанц

150

25

2,5

0,65

0,085

0,115

0,43

0,54

4,92

1,118

*(вннн)=1,9637

∙0,0132=0,026

*ф.к.=0,0459

*мс=0,75658

Перевіряю прийняті кабелі дільничної мережі на втрати напруги в умовах нормального режиму роботи.

Номінальна напруга трансформатора ТП серії ТМ1000 10/0,4 кВ. Причому, номінальні напруга вторинної обмотки Uном.тр= 400 В, відповідає номінальному струму навантаження трансформатора. В режимі холостого ходу (х.х.) трансформатора напруги на вторинній обмотці підвищується на 5% і становить Uо=420 В.

Для нормальної роботи електродвигунів величина напруги на затискачах повинна бути не менш 0,95 від номінального, тобто не менш 360 В.

Таким чином, сумарні припустимі втрати напруги в мережі при живленні від ТП серій ТМ1000 з Uо=420 В не повинні перевищувати при нормальній роботі електродвигунів У∆Uнорм=60 В.

Перевірка мережі на втрати напруги виробляється для найбільш потужного й найбільш вилученого електродвигуна. При розрахунках складається схема заміщення мережі мал.01.

Сумарні втрати напруги в мережі при нормальній роботі визначаються вираженням


У∆Uнорм=∆Uтр+∆Uф.до+∆UЕк≤∆Uдоп

де ∆Uтр – втрати напруги на обмотках трансформатора ;

∆Uф.до – у фідерному кабелі;

∆UЕк – у кабелі відгалуження.

Для розрахунків необхідно знати Iр.тр(НН)

Iр.тр(НН)= 972чv3 0,4=1389 А

Визначення втрат напруги при нормальній роботі (при cos ?=0,7; температурі обмотки тра. +150?C, жив кабелів +65 ?C)

Розрахункові формули:

∆Uтр=√3 Iр.тр(1,5Rтр cos цтр + Xтр sin цтр) = =1,73∙ 1389(1,5∙ 0,0056∙ 0,7+0,026∙ 0,71)=58 В;

∆Uк.л= √3 Iр.до∙ ℓк.л∙ rк.л∙ Кх∙ cos цк.л

Розрахункові ділянки й крапки

Розрахунковий струм ділянки кабелю Iр.i, А

Характеристика кабелю

Втрати напруги ∆Uнорм.i в

ділянках мережі, В

Sж, (мм2)

к.л, км

rк.л,Ом/км

Кх

1 2 3 4 5 6 7

К1

(трформатора)

Iр.тр=1389

∆Uтр = 58 В

К1 – К2(ф.к.7)

Iр (ф.к.) = 165,2

25 0,085 0,223 1,28

∆Uф.до=1,73∙ 165∙ 0,085∙ 0,223∙ 1,28∙ 0,7=4,9

К3 – К4

АД маслостан

Iр(мс)= 22

2,5 0,115 2,11 1,05

∆UБП=1,73∙ 22∙ 0,115∙ 2,11∙ 1,05∙ 0,7=6,8

Сумарні втрати напруги для РЩ7

У∆Uнорм=11,7 < 58 В

Перевірка параметрів мережі за умовою пуску

Дільнична мережа, обрана за умовою нормального режиму, повинна бути перевірена на можливість пуску найбільш потужних вилучених двигунів без “перекидання”, виходячи із припустимих коливань напруги на їхніх затискачах.

Для можливостей пуску електродвигунів величина напруги на їхніх затискачах Uп.р. повинна бути не міні : для конвеєрів – 0,85 Uном.д=360 В.

Визначеннявтрат напруги ∆Uнорм на затискачах двигунів до моменту їхнього запуску при роботі інших електроприймачів з урахуванням послідовності їхнього включення й можливої роботи в режимі холостого ходу (Кх.х.=0,5)

∆Uнорм.i= ∆Uнорм(Iр.iч Iр.i)

Розрахункові ділянки й крапки

Розрахунковий струм ділянки, кабелю Iр.i , А

Втрати напруги ∆Uнорм.i ділянках мережі, В

Запуск двигуна 11 кВт I групи комбайна.

К1

(трформатора)

К1 – К2(ф.к.)

 

К2 – К3(муп)

Iр.тр=0.81[4+13+92+0,5∙ 35+0,5∙ 4+22+0,5(22+80+132)]=0,81∙ 267,5=217

Iр (ф.к.) =0,81(4+13+22+0,5∙ 22)=0,81∙ 50=40,5

Iр (муп) =0,81(22+0,5∙ 22)=0,81∙ 33=26,7

∆Uтр =∆Uтр (Iр.iчIр.i)= 21(217ч492)=9,3 В

∆Uф.до=∆Uф.до(Iр(ф.к)ч Iр(ф.к))=

=13,1(40,5? 199)=2,7 В

∆Uм.до1=∆Uф.до(Iр(муп)ч Iр(муп))=

=25(26,7? 185)=3,6 В

Сумарні втрати напруги для крапки К3

У∆Uнорм= 15,6 В

Визначення значень A Ki для ланцюгів двигунів, що запускаються.

Розрахункові формули:

A Ki= (Ri cos цп + Xi sin цп); для кабелю Aк.л= ℓк.л∙ rк.л∙ Кх∙ cos цп.

Коефіцієнт потужності при пуску двигунів cos цп≈0,5. Дані Кх для кабелів приймаються з табл. 1.14 , інші дані – з табл. 2.6

Розрахункові ділянки й крапки Характеристика кабелю

Влечена AKi для трансформатора й кабелю.

Sж,(мм2)

к.л , км

rк.л,Ом/км

Кх

К1 (трансфорра)

К1 – К2(ф.к.)

К2 – К3(муп)

25

2,5

0,085

0,115

0,223

0,423

1,46

1,33

Aтр=1,5∙ 0,0056∙ 0,5 + 0,026 ∙0,87=0,027

Aф.к.=0,085∙ 0,223∙ 1,46 ∙0,5=0,031

Aмуп=0,115∙ 0,423∙ 1,33 ∙0,5=0,062

Сумарне значення для крапки К3 У A К3 = 0,12

Визначення розрахункових значень напруги ∆Uп.р на затискачах двигуна , при пуску й пусковому струмі двигуна Iп.р.

Розрахункова формула:

Uп.р= U р п.ч1+√3[Iп.номч U ном.д(Rп cos цп + Xп sin цп)= U0 У∆Uнорм.i ч 1+√3(Iп.номч U ном.д) У AKi ;

Iп.р= Iп.ном(Uп.рч U ном.д) 0,8∙ U ном.д=0,8∙ 380=304 В

Розрахункові крапки Розрахунок значень

У∆Uнорм

У AKi

Uп.р, В

Iп.р, А

К4

22,2 0,12

Uп.р= 725 22,2 ч 1+1,73(792ч 380)0,12=563>528

Iп.р= 792(563ч 380)=676

Розрахунок струмів к.з. мережі.

Величини струмів к.з. у мережах НН визначаються з урахуванням можливого коливання живлячої напруги в межах від 0,95 до 1,05 , те номінальної напруги вторинної обмотки трансформатора U ном.тр = 400 В по формулі:

а) для трифазному к.з. Iк= 1,05∙ U ном тр ч√3∙ Z до , А

б) для двофазному к.з. Iк= 0,95∙ U ном. тр ч2∙ Z до , А

де Z до – опір ланцюга к.з. у мережі НН, Ом

Опір ланцюга в мережах напругою 380 В визначається з урахуванням впливу мережі напруги 6кВ по формулі:

а) для 3/фазного к.з. при температурі жив кабелів +15?C і обмотки трра. +20?C


Z до= √( Хстрк.л ∙ L*)2+(Rтр+rк.л.∙ L*)2=√( Хстр +0,075∙ L*)2+( Rтр+0,363∙ L*)2

б) для 2/фазного к.з. з урахуванням нагрівання жив кабелів до +65 ?C і обмотки трансформатора до +150 ?C

Z до=√( Хстр +0,075∙ L*)2+( Rтр+0,423∙ L*)2, Ом

де: Хс – опір системи ВН, наведене до напруги НН і =0,0105 Ом

L* загальна наведена до НН довжина кабелів ВН і НН від базової крапки до тому щоз.

Хтр, Rтр – індуктивний і активний опір обмоток трра. по його технічним даним, і =0,026 і 0,0056 відповідно.

1,5 - коефіцієнт, що враховує збільшення активного опору обмоток трансформатора при нагріванні від +20?C до +150 ?C

К1: Z до= √( 0,0105+0,026 +0,075∙ 0,026)2+( 0,0056+0,363∙ 0,026)2=0,0413

Iк= 724,5 ч1,73 0,0413=10140 ,

Z до=√( 0,0105+0,026 +0,075∙ 0,026)2+( 0,0056+0,423∙ 0,026)2=0,0431

Iк= 655,5 ч2 0,0431=7604 , А

К2: Z до= √( 0,0105+0,026 +0,075∙ 0,1286)2+( 0,0056+0,363∙ 0,1286)2=0,07

Iк= 724,5 ч1,73 0,07=5983 , А

Z до=√( 0,0105+0,026 +0,075∙ 0,1286)2+( 0,0056+0,423∙ 0,1286)2=0,08

Iк= 655,5 ч2 0,08=4097 , А

К3: Z до= √( 0,0105+0,026 +0,075∙ 0,3486)2+( 0,0056+0,363∙ 0,3486)2=0,146

Iк= 724,5 ч1,73 0,146=2869 ,

Z до=√( 0,0105+0,026 +0,075∙ 0,3486)2+( 0,0056+0,423∙ 0,3486)2=0,168

Iк= 655,5 ч2 0,168=1951 , А


Розрахунок опорів ланцюга к.з. Z до і Z до; струмів к.з. Iк і Iк у кабельних мережах напругою 10300 і 380 В:

Розрахункова крапка к.з.

Сумарне наведена довжина кабелів від базової крапки до крапки к.з. ℓ*вн і L*, км

Повний опір ланцюга к.з., Ом Крапки к.з., А

Z до

Z до

Iк

Iк

К1

L* К1 = ℓ*(вннн)=0,026

0,0413 0,0431 10140 7604
К2

L* К2 = L* К1+ ℓ*ф.к.7=0,026+0,1026=0,1286

0,07 0,08 5983 4097
К3

L* К3 = L* К2+ ℓ*уп=0,1286+0,22=0,3486

0,146 0,168 2869 1951

Вибір комутаційно-захисної апаратури РШ і що відключають уставки захистів електроустаткування ділянки.

Кожний комутаційно-захисний апарат повинен бути обраний по номінальній напрузі Uном, номінальному струму Iном і перевірений на здатність, що відключає, Sо.пр. або I о.ін.

Вибір роз'єднувача із плавкими вставками (А37)

Вибір А37 ТП по струмах навантаження й перевірка за комутаційною здатністю в даному розрахунку не виробляється, тому що це виконано розроблювачем ТП.

Вибір фідерних автоматичних вимикачів (А37) виробляється по номінальній напрузі мережі й номінальному струму. Номінальний струм АВ повинен відповідати умові

Iном.А37 ≥ Iр. А37= Iр. (ф.к) де: Iр. А37 – розрахунковий струм через А37

Виходить, для дотримання умов вибираємо:

Для групи електроприймачів від ТП (ф.к.) Iном.А37=200 А, тому що Iр. (ф.к.)=165,2 А

Тип А3739Ф Iном=200А I о.ін.=18000 А ПМЗ Iу=4001200

Обрані А37 перевіримо на здатність відключити максимальний струм к.з., у якості якого береться розрахунковий струм трифазного к.з. на виводах А37.

Для обраних А37 умова повністю дотримується, тому що I о.ін.=18000 А – для РФВ ф.к., а з розрахунку 1,2∙ I до = 1,2∙ 5983=7180 А – для РФВ

18000?7180

При виборі пускача для електроустановки заданими є :

а) номінальна напруга мережі;

б) тип і потужність електроприймачів;

в) струми навантаження й пускові струми електродвигунів;

г) марка й перетин вхідного кабелів;

д) значення струмів к.з. I до – у місці пускача й I до – у найбільш вилученому від пускача крапки мережі, що включається даним пускачем.

Максимальні (3/фазні) струми к.з. у мережі повинні відключатися автоматичними

вимикачами або груповими пускачами. В зв'язку із цим здатність, що відключає, пускача достатня, якщо струм к.з. буде відключатися попереднім захисним апаратом, у якого струму відключення МТЗ відповідає умові.

Iу≤ IкчКч= I о.інч1,2∙ Кч=0,55∙ I о.ін ,

Де: Iк – струм к.з. на затискачах пускача;

I о.ін – здатність пускача;

Кч – коефіцієнт чутливості МТЗ попереднього апарата 1,2

1,2 - коефіцієнт надійності.

Для дотримання умов вибираємо:

Т.к. Iр.(мс)=22 А , те для АД маслостанції подвоювача пакетів буде відповідати

А3716С Iном=25А I о.ін.=1500 А УМЗ Iу=63187 Iт=6000 I о.ін(n=2)=8700 А

Вибір і перевірка уставок максимально-фотополяриметр захисту (МТЗ) низьковольтних апаратів.

При захисті відгалужень до електродвигунів струм уставки МТЗ вибирається за умовами:


Iу ≥Кн I ін ; Iу ≥ I п.ном

де: Кн – коефіцієнт надійності, прийнятий рівним 1,25

При захисті магістралі, струм визначається за умовою

Iу ≥ Кн I прмах.+ У Iр.i

де: I прмах – розрахунковий пусковий струм найбільш потужного двигуна

Iу.тр.(нн) ≥1,25∙ 972+217=1187 Iу=1230±15%=1200

Iу.(ф.к.7) ≥1,25∙ 118+41=159 Iу=180±15%=153

Iу.(уп) ≥1,25∙ 11+21=32 Iу=32±15%=27,8

Iу.(мс) ≥1,25∙ 11+0=11 Iу=11±15%=9

Розділ 5. Охорона праці


Информация о работе «Технологія та структура лінії пакування гипсокартоних аркушів»
Раздел: Промышленность, производство
Количество знаков с пробелами: 87099
Количество таблиц: 23
Количество изображений: 3

0 комментариев


Наверх