3 Импульсный датчик

Импульсный датчик изготавливается из излучателя и фотоприемника. Их располагают по обе стороны диска, установленного на валу редуктора. Диск имеет одно отверстие.

В качестве излучателя используем инфракрасный светодиод минимального габарита и максимальной мощности VD1 АЛ107Б с параметрами : Uпр.макс=1.85 В Iпр.макс=100 мА РЕ= 9 мВт lМИН=940 нм lМАКС=965 нм

Рисунок 2 - Схема принципиальная фотоэлектрического импульсного датчика.

цифровой блок управление датчик

ИК спектр излучения дает возможность совместно с ИК светофильтром на фотоприемнике исключить влияние фоновой засветки на выходной сигнал ФИД.

Резистор R1 задает номинальный ток

IПР.НОМ.=0,15*IПР.МАКС.=15 (мА)

Такой выбор позволит увеличить срок службы излучателя, а также обеспечить необходимый уровень потока излучения.

При Uп=5 В

Выберем R1 из стандартного ряда Е24:

R1=220 Ом ±5% тип МЛТ 0.25

В качестве фотоприемника выбираем кремниевый фотодиод КДФ111Г2, который имеет сравнительно небольшой темновой ток Iт=1 мкА и большую термостабильность.

Определим Ic=18*Iт = 18 мкА.

Выбор R2 обуславливается необходимым выходным сигналом датчика. Так как элементная база КМОП, то для получения необходимого уровня логической единицы требуется напряжение примнрно 3,5 В

Следовательно:

U1ФИД.ВЫХ=U1ФИ.ВХ= 3,5 В

Выберем R2 из стандартного ряда Е24:

R2= 200 КОм ±5% тип МЛТ 0.25

Учтем, что излучатель и приемник надо жестко, соосно зафиксировать. Ширина же диска нам не известна. Вынесем светодиод и фотодиод за пределы печатной платы, оставив лишь резисторы R1 и R2. Для этого сделаем на монтажной схеме 2 входа: VD1, VD2.

Определим выходные сигналы ФИД:

1. Темновой сигнал: Uт=Iт·R2=1·10-6·200·103=0,2 В

2. Световой сигнал: Uc=Ic·R2=18·10-6·200·103=3,6 В

4. Формирователь импульсов

Формирователь импульсов можно изготовить на основе триггера Шмитта, который имеет пороги срабатывания и отпускания, между которыми существует зона гистерезиса 2,6 В.

Таким образом, передаточная (статическая) характеристика элемента Шмитта двухпороговая. Она показана на рисунке 3.

Рисунок 3

 

Выбираем микросхему К1561ТЛ1, в корпусе которой содержится четыре двухвыводных элемента «И-НЕ». Так как в формирователе импульсов используем только один, три других можно применять, как обычный логический элемент.

Для нормальной работы ФИ, должно выполняться 2 условия:

В данном случае

Следовательно, условия выполняются:

Рисунок 4 Схема формирователя импульсов.

5. Счетчик импульсов

Для построения счетчика импульсов используем режим обратного счета с предварительной записью. Используем 4-х разрядный реверсивный двоичный счетчик с асинхронной предустановкой, с асинхронным сбросом и разделенными тактовыми входами - К1554ИЕ7. Используем 2-а таких счетчика(т.е. один для прямого, другой для обратного счета хода метчика).

Диапазон начальных значений Кп и Ко отображен в следующей таблице:

Номер

счётчика

КД(10)

КД(2) (записываемое в счетчик число)

D0 D1 D2 D3
DD1 8 1 0 0 0
DD2 6 0 1 1 0

Подавая импульс кнопкой SB1, записываем число 8 в счетчик DD1 и начинаем обратный счет. При счете ≤0 импульс, сигналом с выхода займа, обнуляем командный триггер ТПХ, устанавливаем логическую единицу на триггере ТОХ, а так же подаем разрешающий сигнал на запись 8 во второй счетчик DD2. Второй счетчик работает в режиме прямого счета. При счете ≥15 импульса сигнал с выхода переноса счетчика обнуляет ТОХ и счетчик DD2



Информация о работе «Разработка цифрового блока управления»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 12213
Количество таблиц: 2
Количество изображений: 3

Похожие работы

Скачать
69109
3
10

... шара, снабженного канавками на поверхности для создания оптимальной турбулентной струи пылевозд. смеси. 1.3 Разработка структурной схемы В данном разделе необходимо представить структурную схему (рис.1.3.1) разрабатываемого нами автоматизированного блока управления пневмокамерным насосом. Структурной называется схема, которая определяет функциональные основные части изделия и связи между ...

Скачать
167649
57
1

... сигналами времени. Ядро предлагает интерфейс для программирования приложения с целью получения функций в виде отдельных программ. 1.2 Разработка автоматизированной системы управления электроснабжением КС «Ухтинская» 1.2.1 Цель создания АСУ-ЭС Целью разработки является создание интегрированной АСУ ТП, объединяющей в единое целое АСУ электрической и теплотехнической частей электростанции, ...

Скачать
50105
1
15

... ранее компьютерных технологий, применяемых на этапах разработки объекта машиностроительного профиля, приведена в Приложении А. Глава 2. Современные компьютерные технологии при проектировании высокомоментного линейного привода с цифровым программным управлением Привод линейный синхронный представляет собой комплектный привод прямого действия на базе однокоординатного синхронного линейного ...

Скачать
63963
3
3

... ) более 8 раз в течение (32±2)с, подать напряжение на контакт 3 разъема ХР2, обеспечивая формирование кодов в соответствии с пунктом 2 таблицы 1 и начать отсчет времени tв, по истечении которого блок управления должен вновь начать отработку алгоритма по пунктам а), б). При повторении условий по пункту и) блок управления должен отработать алгоритм по пункту з). 2.4. Обоснование выбора элементной ...

0 комментариев


Наверх