6. Командные триггеры

В начальный момент времени для стабильной работы ЦБУ необходимо обнулить командные триггеры:

Рисунок 5 – Схема формирования сигнала сброса.

Для ЛЭ серий К1554 и К1561

Время задержки приблизительно равно Τ=3,5 нс на вентиль, таким образом для гарантированного сброса все микросхем T= 20 мс.

Выберем R4 из стандартного ряда Е24:

R4= 10 КОм ±5% тип МЛТ 0.25

T=R4∙C1; => C1=T/R4=(20∙10-3)/(10∙103)=2 мкФ

Выберем С1 из стандартного ряда Е24:

С1= 2 мкФ ±5%

Командный триггер строим на основе логического элемента К1554ЛА4 (используем для однородности схемы). Эта интегральная схема содержит три элемента «3И-НЕ», осуществляющих операцию логического умножения с инверсией. RS – триггер, построенный на основе этих элементов, управляется нулем. ТПХ состоит из двух ЛЭ «3И-НЕ» на базе К1554ЛА4 а ТОХ из одного ЛЭ «3И-НЕ» на базе К1554ЛА4 и одного «2И-НЕ» на базе К1561ТЛ1. Сигналы на командный триггер поступают с кнопок «ПУСК», также с внешних устройств (ВУ) и со счетчика импульсов (СИ ≤0). При нажатии кнопки «ПУСК», сигнал низкого уровня будет подаваться на вход разрешения записи в счетчик импульсов, производя запись кода для начала отсчета количества импульсов. С ТПХ подается сигнал на импульсный усилитель мощности (ИУМ1).

При достижении заданного кода на СИ на ТПХ подается сигнал логического нуля, который сбрасывает его в ноль, при этом ТОХ переключается в единицу, так же происходит подключение счетчика обратного хода. Когда количество импульсов станет равным коду, выставленному на втором счетчике, счетчик выдаст сигнал логического ноля, произойдет переключение ТОХ в ноль и остановка двигателя.

С кнопки «ПУСК» и с внешнего устройства ВУ подается импульс для записи количества импульсов в счетчик импульса. Запись в счетчик будет закончена намного раньше того как придет первый счетный импульс, так как в цепи запуска электродвигателя есть элементы создающие задержку сигнала (логический элемент, ФИД, ФИ), а также сам двигатель обладает инерционными свойствами, поэтому ошибок в системе, связанных с записью кода быть не должно.

7. Импульсные усилители мощности

Оба усилителя мощности абсолютно одинаковы поэтому рассчитываем только один из них.

Определение VT1

Выберем транзистор VT1 из следующих условий

Выходной транзистор, согласующий ЛЭ с нагрузкой, выбирается по току коллектора


IК. НАС.=IП и мощности РК.НАС=IК.НАС∙UК.НАС;

соответствующих режиму насыщения транзистора, а также по коэффициенту передачи β.

Необходимое значение коэффициента β определяется из условия

где

kH=(2 – 4) - коэффициент форсировки насыщения;

I1ВЫХ.МАКС - максимальный выходной ток ЛЭ.

Примем kH=2 а IБ.НАС=I1ВЫХ=20 мА тогда

КТ864A
Uкэ.макс, В 200
Iк.макс, А 10
Рк.макс, Вт 100
h21Э 40÷200

Выберем транзистор КТ864А с β=80, UКЭ.МАКС=200 В, IК.МАКС=10 А, PК.МАКС=100 Вт

Проверим его на работоспособность

UКЭ.МАКС≥1.25∙UП=1,25∙110=137,5 В

IК.МАКС≥1.25∙IК.НАС=1,25∙0,8=1 А

PК.МАКС≥1.25∙PК.НАС=1.25∙IК.НАС∙UК.НАС у данного транзистора UК.НАС≈2 В PК.МАКС≥1.25∙IК.НАС∙UК.НАС=1,25∙0,8∙2=2 Вт

По всем значениям данный транзистор полностью удовлетворяет нашей схеме.

Определение RБ

Сопротивление резистора RБ в цепи базы транзистора равно

где U1ВЫХ=4,5 (В) а UБЭ.НАС≈2 В

Выберем сопротивление из стандартного ряда

RБ=150 Ом ±5% МЛТ 0,25

Отсюда следует что:

R5=150 Ом ±5% МЛТ 0,25

R6=150 Ом ±5% МЛТ 0,25


Список литературы

1. Юшин А.М. Оптоэлектронные приборы и их зарубежные аналоги: Справочник. В 5 т. Т.1. – М., 2000

2. Юшин А.М. Оптоэлектронные приборы и их зарубежные аналоги: Справочник. В 5 т. Т.3. – М., 2000

3. Петровский И.И., Прибыльский А.В., Троян А.А., Чувелев В.С. Логические ИС КР1533, КР1554. Справочник. В двух частях. Часть 1. – M., «Бином», 1993.

4. Петровский И.И., Прибыльский А.В., Троян А.А., Чувелев В.С. Логические ИС КР1533, КР1554. Справочник. В двух частях. Часть 2. – M., «Бином», 1993.

5. Богданович М.И., Грель И.Н., Прохоренко В.А., Шалимо В.В. Цифровые интегральные микросхемы. Справочник. – Минск, «Беларусь», 1991.

6. Полупроводниковые приборы: транзисторы. Справочник /В.Л. Аронов, А.А. Баюков, А.А. Зайцев и др. Под общ. Ред. Н.Н. Горюнова. – 2-е изд., перераб. – М.: Энергоатом издат, 1985.

Размещено на http://www.


Информация о работе «Разработка цифрового блока управления»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 12213
Количество таблиц: 2
Количество изображений: 3

Похожие работы

Скачать
69109
3
10

... шара, снабженного канавками на поверхности для создания оптимальной турбулентной струи пылевозд. смеси. 1.3 Разработка структурной схемы В данном разделе необходимо представить структурную схему (рис.1.3.1) разрабатываемого нами автоматизированного блока управления пневмокамерным насосом. Структурной называется схема, которая определяет функциональные основные части изделия и связи между ...

Скачать
167649
57
1

... сигналами времени. Ядро предлагает интерфейс для программирования приложения с целью получения функций в виде отдельных программ. 1.2 Разработка автоматизированной системы управления электроснабжением КС «Ухтинская» 1.2.1 Цель создания АСУ-ЭС Целью разработки является создание интегрированной АСУ ТП, объединяющей в единое целое АСУ электрической и теплотехнической частей электростанции, ...

Скачать
50105
1
15

... ранее компьютерных технологий, применяемых на этапах разработки объекта машиностроительного профиля, приведена в Приложении А. Глава 2. Современные компьютерные технологии при проектировании высокомоментного линейного привода с цифровым программным управлением Привод линейный синхронный представляет собой комплектный привод прямого действия на базе однокоординатного синхронного линейного ...

Скачать
63963
3
3

... ) более 8 раз в течение (32±2)с, подать напряжение на контакт 3 разъема ХР2, обеспечивая формирование кодов в соответствии с пунктом 2 таблицы 1 и начать отсчет времени tв, по истечении которого блок управления должен вновь начать отработку алгоритма по пунктам а), б). При повторении условий по пункту и) блок управления должен отработать алгоритм по пункту з). 2.4. Обоснование выбора элементной ...

0 комментариев


Наверх