2. Физическая трактовка процессов интерполяции сигналов

Основное математическое соотношение интерполяционной обработки:

, (8)

можно проиллюстрировать следующим образом (рисунок 3).

В качестве интерполяционной функции в этом примере используется функция . Интервалы интерполяции и обработки  должны последовательно сдвигаться по времени. Операцию интерполяции можно выполнить с помощью линейного фильтра с импульсной характеристикой вида:

. (9)

Рисунок 3

Для доказательства этого утверждения обозначим сигнал на входе и выходе линейного фильтра через  и (рисунок 4):

Рисунок 4

Представим сигнал на входе линейного фильтра в виде последовательности кратковременных импульсов, площадь которых равна соответствующим выборкам

. (10)

Из свойств линейных систем следует, что сигнал на выходе равен:

 (11)

Выражение (11) получается с учетом фильтрующего свойства δ-функции. Если импульсная характеристика линейного фильтра  удовлетворяет выражению (9), то соотношение (11) переходит в формулу для интерполяционной обработки:

. (12)

Идеальное восстановление функции на выходе линейного фильтра невозможно, т.к.:

- отклик на выходе линейного фильтра не может появиться раньше соответствующей выборки на входе;

- число выборок не равно бесконечности;

- АЧХ фильтра отличается от идеальной.

3. Задачи идеальной интерполяции

В общем случае формула интерполяции имеет вид:

, (13)

- оценка значения i-ой выборки, - восстановленный первичный сигнал,

.


Интерполяция возможна в том случае, если в сигнале имеются корреляционные связи. Может быть поставлена задача оптимального выбора вида функции , при которой ошибка интерполяции минимальна.

Рассмотрим задачу идеальной интерполяции сигнала при предположении, что , т.е. отсутствуют внешние шумы и ошибки системы.

Пусть непрерывный первичный сигнал описывается корреляционной

функцией . Требуется определить форму интерполирующей функции, обеспечивающей при заданных значениях коэффициента корреляции минимум СКО

. (14)

Можно показать, что в этом случае оптимальная интерполирующая функция имеет вид:

, (15)

где - весовые коэффициенты, однозначно связанные со значениями коэффициентов корреляции в точках , .

Т.о., оптимальная интерполирующая функция может быть определена как взвешенная сумма функций времени равных корреляционной функции первичного сигнала. Как следствие этой теории может бать доказана следующая теорема:

Если на интервале интерполяции  корреляционная функция и ее взвешенная сумма хорошо аппроксимируются полиномом, то использование этого приближения обеспечит среднеквадратическое приближение близкое к идеальному. Т.е. требуется хорошая аппроксимация не всей корреляционной функции, а только ее части, приходящейся на интервал интерполяции (рисунок 5).

Рисунок 5

Чем меньше , тем точнее возможна аппроксимация в виде многочлена и тем проще могут быть аппроксимирующие полиномы. Проиллюстрируем эту теорему для сигнала с прямоугольным спектром (рисунок 6):

Рисунок 6

Известно, что в этом случае в соответствии с теоремой

В.А. Котельникова возможно разложение первичного сигнала в ряд:

, (16)

где - частота опроса. В точках  интерполирующая функция равна:

. (17)

Сопоставим этот результат с выражением для идеальной интерполирующей функции:

. (18)

Чтобы эти формулы совпали, необходимо чтобы при , а в случае , т. е. чтобы корреляционная функция имела вид:

. (19)

Такой функцией корреляции обладает сигнал с прямоугольным спектром, а условие  при  приводит к требованию, чтобы частота опроса .

Это соотношение не может быть использовано на практике по следующим причинам:


Информация о работе «Дискретно-аналоговое представление»
Раздел: Информатика, программирование
Количество знаков с пробелами: 16090
Количество таблиц: 1
Количество изображений: 15

Похожие работы

Скачать
8605
0
8

... аналоговых выборок, которые формируются через определенные интервалы времени (используются АИМ, ШИМ, ВИМ). Дискретно-квантованное представление отличается от дискретно-аналогового тем, что выборки формируются в цифровой форме. При обобщенном дискретном представлении координаты сообщения представляют собой коэффициенты некоторого ряда, это позволяет сократить количество координат, т.е. объем выб

Скачать
12478
0
4

... представления – результат соединения адаптивных и стохастических представлений, при которых одна группа характеристик изменяется стохастически, а другая адаптируется к измененному сообщению. 3. Рациональное представление информации При ракетно-космических исследованиях наметилась постоянная тенденция к росту космических измерений и регистрации на борту летательного объекта информации. На ...

Скачать
16875
2
1

... разработаны технические устройства, в частности компьютеры, которые специально предназначены для автоматической обработки информации. 2. Кодирование информации. Способы кодирования. Кодирование информации В процессе преобразования информации из одной формы представления (знаковой системы) в другую осуществляется кодирование. Средством кодирования служит таблица соответствия, которая ...

Скачать
23730
0
8

... функций в виде зависимости их значений от определенных аргументов Δвремени, линейной или пространственной координаты и т.п.) при анализе и обработке данных широко используется математическое описание сигналов по аргументам, обратным аргументам динамического представления. Так, например, для времени обратным аргументом является частота. Возможность такого описания определяется тем, что любой ...

0 комментариев


Наверх