2.4 Основные области применения машинного зрения

В статье Бобровского «Когда машины прозреют» [Бобровский, 2004] представлена следующая статистика областей, в которых востребованы системы машинного зрения:

·  Небольшой процент рынка приходится на системы виртуальной реальности, предлагающие качественно новый интерфейс "человек - компьютер", основанный на распознавании лиц и жестов, на системы, обеспечивающие выполнение задач безопасности, смысловой анализ мультимедийных данных и т.д.

·  Востребованы системы машинного зрения и в робототехнике. Эксперты полагают, что технологии машинного зрения - самый простой способ научить аппараты автономным действиям в естественном мире.

·  Существенный спрос наблюдается со стороны сельскохозяйственных организаций, где необходима автоматизация деятельности по визуальному контролю и сортировке продуктов, однако пока системы машинного зрения показывают в данной области неудовлетворительные результаты.

·  Отмечается рост интереса к системам машинного зрения со стороны нанотехнологических фирм, биотехнологических компаний и в сфере медицины (автоматический анализ медицинских изображений – рентген, томография, УЗИ)

·  Востребовано машинное зрение и в области охранных систем (идентификация личности, детекторы движения, распознавание и отслеживание движущихся объектов, распознавание автомобильных номеров и т.д.);

·  Системы машинного зрения востребованы в области контроля качества и инспекции продуктов питания (в настоящее время оценка качества бисквитов на кондитерской линии осуществляется со скоростью 60 пирожных в секунду), а также в области визуального контроля и управления (учет, считывание штрих-кодов).

·  Машинное зрение применяется в системах распознавания рукописного и печатного текста.


 

3. Техническая составляющая машинного зрения

 

3.1 Методы обработки изображения

В системах машинного зрения, для решения перечисленных задач, используются различные технологии и методы. Ниже перечислены основные методы обработки изображения:

·  Счетчик пикселей: подсчитывает количество светлых или темных пикселей и на основе результата делает необходимые выводы об изображении.

·  Выделение связанных областей: Связная область изображения – это, с одной стороны, тип объекта, все еще очень близко связанный с растровым изображением, и в то же время – это уже некая самостоятельная семантическая единица, позволяющая вести дальнейший геометрический, логический, топологический и любой другой анализ изображения

·  Бинаризация: преобразует изображение в серых тонах в бинарное (белые и черные пиксели).

·  Гистограмма и гистограммная обработка: Гистограмма характеризует частоту встречаемости на изображении пикселей одинаковой яркости.

·  Сегментация: используется для поиска и/или подсчета деталей. Сегментацией изображения называется разбиение изображения на непохожие по некоторому признаку области. Предполагается, что области соответствуют реальным объектам, или их частям, а границы областей соответствуют границам объектов.

·  Чтение штрих-кодов: декодирование 1D и 2D кодов, разработанных для считывая или сканирования машинами

·  Оптическое распознавание символов: автоматизированное чтение текста, например, серийных номеров

·  Измерение: измерение размеров объектов в дюймах или миллиметрах

·  Сопоставление шаблонов: поиск, подбор, и/или подсчет конкретных моделей

·  Инвариантные алгоритмы сопоставления точечных особенностей на изображениях: обнаружения и сопоставление точечных особенностей на изображениях.

·  Методы идентификация личности по радужной оболочке глаза

·  Различные методы восстановления формы объекта по изображениям

В большинстве случаев, системы машинного зрения используют последовательное сочетание этих методов обработки для выполнения полного инспектирования. Например, система, которая считывает штрих-код может также проверить поверхность на наличие царапин или повреждения и измерить длину и ширину обрабатываемых компонентов.

 

3.2 Компоненты системы

Типовая система машинного зрения состоит из одной или нескольких цифровых или аналоговых камер (черно-белые или цветные) с подходящей оптикой для получения изображений, подсветки и объекта (рис. 4), оборудования ввода/вывода или каналы связи для доклада о полученных результатах. Кроме того, важна и программная составляющая систем машинного зрения, а именно программное обеспечение для подготовки изображений к обработке (для аналоговых камер это оцифровщик изображений), специфичные приложения программного обеспечения для обработки изображений и обнаружения соответствующих свойств.


Описание: C:\Documents and Settings\Татьяна\Local Settings\Temporary Internet Files\Content.Word\Новый рисунок (8).bmp

Рис.4. Состав типовой системы машинного зрения

 

Матрица чувствительных элементов, входящих в состав видеокамеры, предназначена для получения цифрового изображения. В состав матрицы чувствительного элемента входит множество аналого-цифровых преобразователей, предназначенных для преобразования информации о световой интенсивности в цифровое значение.

Объектив позволяет камере фокусироваться на определенном расстоянии и получать четкое изображение объекта. В случае, когда объект находится вне фокусного расстояния, изображение получается нерезким (размытым, с нечеткими краями), что ухудшает возможность обработки видеоряда. В отличие от обычных цифровых фотоаппаратов с объективами, поддерживающими функции автофокусировки, в машинном зрении применяется оптика с фиксированным фокусным расстоянием или ручной настройкой фокуса. Существуют различные типы объективов для самых разных задач (стандартные, телескопические, с широким углом обзора, с увеличением и другие), и выбор правильного типа оптики - важный этап при проектировании системы машинного зрения.

Подсветка - еще один важный элемент в машинном зрении. Благодаря использованию различных типов освещения можно расширить круг задач, решаемых машинным зрением. Существует различные типы подсветок, но наиболее популярным является светодиодная - в связи с ее высокой яркостью. При этом современный уровень развития светодиодной техники обеспечивает большой срок службы устройства и малое энергопотребление.


Информация о работе «Машинное зрение»
Раздел: Информатика, программирование
Количество знаков с пробелами: 43467
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
123813
0
0

... за несколько секунд. Причем искать можно в любой форме. Некоторые, например Lingvo, встраиваются во все основные офисные приложения и выделенное слово можно переводить нажатием нескольких клавиш. Преимущества электронных словарей При традиционном подходе минимальной единицей доступа является лексема (имя словарной статьи): нужно прочесть всю статью, чтобы определить, содержится ли в ней ответ ...

Скачать
57761
0
0

... Маркса и до него, но это его мало интересовало, поскольку из этого широкого плана выпадает тема классовой борьбы и тема взаимоотношения труда (живого) и капитала в трактовке Маркса. Машины - важнейший фактор социального прогресса. Работы Маркса о них в "Экономических рукописях" (первый вариант “Капитала”) написаны в 1857-1859 годах, а первый том "Капитала" в последнем варианте вышел в 1872 году. ...

Скачать
70193
0
0

... с “мозолистыми руками”. Но в действительности под этим символом скрывается любая производительная сила, любой субъект труда, способный заменить человека в его труде. Это может быть и раб, и вол, и машина. Учение Маркса о прибавочной стоимости безусловно верно в своем главном утверждении - прибавочная стоимость создается абстрактным трудом. И это утверждение представляет собой большой вклад в ...

Скачать
64295
0
0

... структуры. PROSPECTOR — экспертная система, созданная для содействия поиску коммерчески оправданных месторождений полезных ископаемых.   2. Перспективы и тенденции развития AI Сообщения об уникальных достижениях специалистов в области искусственного интеллекта (ИИ), суливших невиданные возможности, пропали со страниц научно-популярных изданий много лет назад. Эйфория, связанная с первыми ...

0 комментариев


Наверх