5.2 Биометрия

В последние годы во всем мире наблюдается все возрастающий интерес к методам распознавания и идентификации личности. Основные пути и способы решения этих задач лежат в области разработки биометрических систем. В биометрических системах для распознавания человека используется совокупность биометрических характеристик, основанных на биологических особенностях человеческого тела. В качестве таких биометрических характеристик могут выступать голос, почерк, отпечатки пальцев, геометрия кисти руки, рисунок сетчатки или радужной оболочки глаза, лицо и ДНК.

Биометрическая защита более эффективна в сравнении с такими методами, как использование паролей, PIN-кодов, смарт-карт поскольку биометрия позволяет идентифицировать именно конкретного человека, а не устройство. Традиционные методы защиты не исключают возможности потери или кражи информации, вследствие чего она становится доступной незаконным пользователям. Уникальный биометрический идентификатор, каковым является, например, отпечаток пальца или изображение лица, служит ключом, который невозможно потерять.

Биометрическая система безопасности позволяет отказаться от парольной защиты либо служит для ее усиления. Одной из основных причин, которые существенно повысили значимость автоматической обработки и анализа биометрической информации, явилось повышение требований к функциональным возможностям автоматических систем безопасности, расположенных в общественных местах (вокзалы, супермаркеты и т. п.)

Рассмотрим несколько примеров биометрических приложений, встречающихся на практике.

 

5.2.1. Система обнаружения и распознавания лиц

В ИИТ разработана технология обнаружения и распознавания лиц по двумерным изображениям, включающая три основных модуля:

• детектирование (обнаружение) лиц;

• индексация (кодирование и последующий быстрый поиск лиц в базе);

• идентификация лиц.

Модули применяются последовательно. Выделенные на текущем кадре изображения лиц поступают в систему индексации, которая в ответ указывает заданное количество «кандидатов» из хранящейся базы изображений лиц, наиболее похожих на текущее изображение. После этого процедура идентификации обрабатывает изображения лиц найденных кандидатов с целью их точного распознавания. Такой подход позволяет осуществлять полнофункциональную работу с «живым» видеопотоком с целью выделения и распознавания лиц по значительным объемам банков изображений в режиме, близком к режиму реального времени.

На рисунке 7 показаны составляющие описанной выше технологии обнаружения и распознавания лиц.

Рис.7. Система обнаружения и распознавания лиц

Показаны: текущее видеоизображение (слева вверху), результат выделения лица (справа вверху); результат поиска в индексированной базе изображений лиц (второй ряд изображений – найденные «кандидаты», среди которых могут быть и ложные); результат окончательной идентификации лица (третий ряд изображений – показаны только «кандидаты», успешно прошедшие идентификацию).


 

5.2.2. Система распознавания жестов руки человека

Распознавание жестов представляет собой обширную область приложений компьютерного зрения. Под «жестами» в широком смысле понимаются любые движения человеческого тела. В узком смысле обычно подразумеваются некоторые характерные движения рук человека, имеющие в определенной предметной области какие-либо определенные семантические значения. Распознавание жестов может использоваться для построения различного рода человеко-машинных интерфейсов, управления различными техническими средствами и системами виртуальной реальности.

В качестве простого примера можно рассмотреть систему распознавания жестов руки человека по изображениям от черно-белой видеокамеры низкого разрешения (рис.8). Система не требует предварительного обучения и устойчиво различает до 10 различных жестов

Рис.8. Простой пример системы распознавания жестов

 

5.3 Медицинские приложения

Особое место в области разработки систем компьютерного зрения занимают задачи медицинской диагностики. Основные задачи, которые должны решать здесь данные технологии, следующие: задача измерения объектов на рентгенограммах, компьютерных томограммах и современных цифровых ультразвуковых приборах, задача улучшения визуализации, задача восстановления трехмерных форм объектов. Наиболее современной и бурно развивающейся в области разработки медицинских диагностических приложений можно считать технологию, связанную с определением степени алкогольного и наркотического опьянения на основе анализа реакции зрачка пациента.

 

5.3.1. Системы для компьютерного анализа томографических изображений

При создании систем анализа томографических изображений общего назначения основной акцент делался на разработку процедур автоматической и полуавтоматической сегментации изображений. Реализованная схема алгоритма сегментации включает:

• первичную гистограммную сегментацию методом статистического выделения мод;

• формирование связных областей с заданными характеристиками методом слияния/разбиения.

Специально разработанный для данного класса задач метод статистического выделения мод позволяет оценивать количество и степень выраженности мод гистограммы (рис.9), опираясь на соответствующий график статистической производной.

Рис.9. Пример автоматического разделения мод на гистограмме

Метод слияния/разбиения связных областей использует полученную на первом этапе разметку пикселей изображения в качестве стартового приближения, после чего происходит процесс итеративной релаксации с целью минимизации заданной энергетической функции. Алгоритм сегментации может быть использован как в автоматическом, так и в полуавтоматическом режиме. В этом случае врач-оператор может инициализировать процесс сегментации интересующих его объектов путем указания интересующих его точек.


 


Информация о работе «Машинное зрение»
Раздел: Информатика, программирование
Количество знаков с пробелами: 43467
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
123813
0
0

... за несколько секунд. Причем искать можно в любой форме. Некоторые, например Lingvo, встраиваются во все основные офисные приложения и выделенное слово можно переводить нажатием нескольких клавиш. Преимущества электронных словарей При традиционном подходе минимальной единицей доступа является лексема (имя словарной статьи): нужно прочесть всю статью, чтобы определить, содержится ли в ней ответ ...

Скачать
57761
0
0

... Маркса и до него, но это его мало интересовало, поскольку из этого широкого плана выпадает тема классовой борьбы и тема взаимоотношения труда (живого) и капитала в трактовке Маркса. Машины - важнейший фактор социального прогресса. Работы Маркса о них в "Экономических рукописях" (первый вариант “Капитала”) написаны в 1857-1859 годах, а первый том "Капитала" в последнем варианте вышел в 1872 году. ...

Скачать
70193
0
0

... с “мозолистыми руками”. Но в действительности под этим символом скрывается любая производительная сила, любой субъект труда, способный заменить человека в его труде. Это может быть и раб, и вол, и машина. Учение Маркса о прибавочной стоимости безусловно верно в своем главном утверждении - прибавочная стоимость создается абстрактным трудом. И это утверждение представляет собой большой вклад в ...

Скачать
64295
0
0

... структуры. PROSPECTOR — экспертная система, созданная для содействия поиску коммерчески оправданных месторождений полезных ископаемых.   2. Перспективы и тенденции развития AI Сообщения об уникальных достижениях специалистов в области искусственного интеллекта (ИИ), суливших невиданные возможности, пропали со страниц научно-популярных изданий много лет назад. Эйфория, связанная с первыми ...

0 комментариев


Наверх