1. Основы технологии выплавки стали в электродуговых печах
1.1 Состояние и история развития выплавки стали в дуговых электропечах
Электрометаллургия занимает второе место по объему мирового производства стали. Эта отрасль техники включает в себя совокупность агрегатов и технологий по производству металлов и сплавов, использующих различные способы преобразования электрической энергии в тепловую. При этом окружающая среда (газовая фаза) либо вообще не принимает участие в выделении тепла (как при индукционном нагреве), либо ее свойства практически не влияют на этот процесс (как при дуговом или плазменном нагреве).[1]
При выплавке стали в электрических печах появляются дополнительные возможности для воздействия на физико-химические и тепловые процессы. В рабочем пространстве агрегата можно создавать окислительную, восстановительную или нейтральную атмосферу, подвергать металл воздействию вакуума или высокого давления. Количество тепловой энергии и место ее подачи относительно просто можно менять и использовать в соответствии с возникающими потребностями. В принципе электрическая печь наилучшим образом может быть использована для решения всей совокупности задач при производстве жидкой стали из металлошихты различного состава и свойств.
В настоящее время основная масса электростали выплавляется в дуговых печах. Разрез ЭСПЦ по электродуговой сталеплавильной печи представлен на (рис. 1.1). В этих печах выделение тепла происходит за счет экзотермических электрофизических процессов дугового разряда. В трехфазных дуговых сталеплавильных печах (ДСП), работающих на переменном токе промышленной частоты, электрические дуги горят между тремя вертикально расположенными графитированными электродами и расплавляемой металлошихтой или жидким металлом, выполняющими роль нулевой точки электрического соединения трех дуг в «звезду». В дуговых сталеплавильных печах постоянного тока (ДСППТ) электрическая дуга горит между одним графитированным электродом-катодом и металлом, являющимся анодом. Тепловая мощность дугового разряда может изменяться в широких пределах за счет изменения силы тока, напряжения и длины дуги. Температура дуги превышает 3000 °С.
Первые ДСП малой вместимости (0,5... 1,5 т), появившиеся в начале XX в., имели цилиндрический кожух с футеровкой, загружались через рабочее окно вручную или мульдами загрузочным краном, работали по двухшлаковой технологии с применением в качестве окислителя железной руды. Такие ДСП первого поколения характеризовались большой длительностью плавки, малой производительностью и удельной мощностью источника питания 0,2...0,25 МВ·А/т.
В 20 - 40-е годы XX в. было построено большое число печей на машиностроительных и металлургических заводах. Вместимость печей постепенно увеличилась до 30...50 т. В этих печах было сосредоточено основное производство быстрорежущих, инструментальных, нержавеющих, трансформаторных, жаропрочных, подшипниковых и других высоколегированных и высококачественных сталей. В это время сформировались основные принципы ведения плавки в ДСП, позволяющие в самой печи получать сталь необходимого качества. В печах сравнительно небольшого объема можно было проводить восстановительный период, когда металл выдерживают под раскисленным шлаком и созданной восстановительной или нейтральной газовой фазой в рабочем пространстве печи. Однако расход электроэнергии и продолжительность плавки в этих печах оставался высоким:
Вместимость печи, Расход энергии, Продолжительность плавки,
Т кВт·ч/т стали ч
10 725 5,5
30 600 6,3
Механизированная загрузка металлошихты через верх печи, применение газообразного кислорода в окислительный период, совершенствование технологии рафинирования металла позволили на ДСП второго поколения повысить мощность электропечных трансформаторов до уровня 0,32...0,45 МВ·А/т. Увеличение тепловой мощности этих печей потребовало изменения профиля рабочего пространства. Кожух печей стал конически-цилиндрическим с соответствующим сложным профилем огнеупорной футеровки.
Широкое развитие в металлургии стали внепечной обработки металла позволило перейти на одношлаковую технологию электроплавки. Одновременно увеличивается вместимость ДСП и повышается мощность трансформаторов до 0,5...0,75 МВ·А/т. Это позволяет резко сократить продолжительность плавки и уменьшить расход электроэнергии. Проблема низкой стойкости футеровки сделала необходимым оборудовать электропечь водоохлаждаемыми элементами стен и свода. Классический наклон печи при выпуске металла через желоб (40...45°) создает опасность контакта металла с водоохлаждаемыми элементами и создает трудности отделения окислительного шлака от металла.
В ДСП четвертого поколения вместимостью более 150 т с удельной мощностью трансформатора более 0,8 МВ·А/т применяют водоохлаждаемый цилиндрический кожух и плоский металлический водоохлаждаемый свод (за исключением центральной кирпичной секции для установки графитированных или водоохлаждаемых электродов), а также донный слив металла. При этом выпускное отверстие выносят за периметр корпуса в футеровку выступа ванны (эркерный выпуск металла). Современная ДСП предназначена только для расплавления шихты и выплавки полупродукта с заданной температурой, а доводка металла по составу, легирование и т. д. осуществляются вне печи методами внепечной обработки. При этом длительность плавки составляет менее 1 ч, а производительность - 1 млн. т в год и более.
В настоящее время в России (и в мире) работают ДСП второго, третьего и четвертого поколений. Все дуговые печи условно подразделяют на следующие группы:
1)малые печи вместимостью до 6 т, применяемые в основном в фасонолитейных цехах;
2)средние печи вместимостью 12...50 т;
3)крупные печи вместимостью 100 т и более (в России работают несколько ДСП вместимостью 200 т, за рубежом - 360 и 720 т).
Главные особенности организации работы современных ДСП сводятся к следующему:
1.Переход на упрощенную технологию, при которой в печи производят быстрое расплавление металлошихты, окисление углерода и фосфора, нагрев металла, удаление окислительного шлака. Окончательное рафинирование (десульфурация, дегазация и т.п.) и доводка металла осуществляются вне печи методами внепечной обработки.
2.Использование мощных и сверхмощных трансформаторов (до 1 МВ·А/т) и стремление к эффективному использованию этой мощности.
3.Возможно более полное использование тепла отходящих газов для предварительного подогрева металлошихты.
4.Применение для интенсификации процессов нагрева и расплавления металлошихты кислорода и топливно-кислородных горелок.
5.Использование водяного охлаждения элементов конструкции электропечи.
... состава, учитываемых режим работы рабочего места, профессию работающего и условия труда, продолжительность основного и дополнительного отпусков и др. Ремонтный персонал электросталеплавильного цеха не учтен, так как в соответствии с политикой проводимой на ОАО "ММК", он выделен в сервисную службу. Штатное расписание рабочих по ЭСПЦ представлено в таблице 1. Таблица 1– Штатное расписание ...
... предприятия. Вокруг ОЭМК расположены леса, они обладают высокой устойчивостью и способны противостоять влиянию низких концентраций хронически загрязняющих атмосферу веществ. На Оскольском Электрометаллургическом комбинате уделяется большое внимание изучению распространения загрязнений на местности, вопросами оценки последствий воздействия промышленных выбросов на окружающую природную среду, в ...
... в юго-восточной части Курганской области – овцеводство. Пищевая промышленность представлена мукомольными и молочными заводами и комбинатами, мясокомбинатами. Огромную роль в функционировании хозяйственного комплекса Уральского федерального округа играет транспорт. В регионе преобладает железнодорожный транспорт, имеющий как внутрирайонное, так и транзитное значение. По территории округа проходит ...
... - Мирный, Удачное, Айхал. На Дальнем Востоке разведаны редко встречающиеся в России месторождения слюды-флогопита на территории Верхнего Алдана в Томмоте. 2. Добыча благородных металлов и алмазов 2.1 Из истории освоения Освоение Россией Дальнего Востока началось в 50-х гг. XIX в., примерно в то же время, что и районов Дальнего Запада США (1845 г.). В России первый алмаз был найден в 1829 г. ...
0 комментариев