4.  Построим линейную модель регрессию со всеми факторами (кроме фиктивной переменной Х4)

По степени влияния на показатель «Цена» распределили:

Самый значимый фактор – общая площадь (F= 40,806)

Второй по значимости фактор- количество комнат (F= 29,313)

5.  Включенные/исключенные переменные

Модель Включенные переменные Исключенные переменные Метод
1 Общая площадь . Включение (критерий: вероятность F-включения >= ,050)
2 Район . Включение (критерий: вероятность F-включения >= ,050)
3 Кол-во комнат . Включение (критерий: вероятность F-включения >= ,050)

a Зависимая переменная: Цена

6.  Построим линейную модель регрессии для наиболее влиятельных факторов с фиктивной переменной, в нашем случае она и является одним из влиятельных факторов.

Полученная модель:

У = 348,349 + 35,788 Х1 -217,075 Х4 +305,687 Х7

Оценка качества модели.

Коэффициент детерминации R2 = 0,807

Показывает долю вариации результативного признака под воздействием изучаемых факторов. Следовательно, около 89% вариации зависимой переменной учтено и обусловлено в модели влиянием включенных факторов.

Коэффициент множественной корреляции R = 0,898

Показывает тесноту связи между зависимой переменной У со всеми включенными в модель объясняющими факторами.

Стандартная ошибка = 126,477

Коэффициент Дарбина - Уотсона = 2,136

Проверка значимости уравнения регрессии

Значение критерия F-Фишера = 41,687

Уравнение регрессии следует признать адекватным, модель считается значимой.

Самый значимый фактор – количество комнат (F=41,687)

Второй по значимости фактор- общая площадь (F= 40,806)

Третий по значимости фактор- район (F= 32,288)

7.  Фиктивная переменная Х4 является значимым фактором, поэтому целесообразно включить ее в уравнение.

Интервальные оценки параметров уравнения показывают результаты прогнозирования по модели регрессии.

С вероятностью 95% объем реализации в прогнозируемом месяце составит от 540,765 до 1080,147 млн. руб.

8.   Определение стоимости квартиры в элитном районе

Для 1 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 3 + 305,687 * 1

Для 2 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 3 + 305,687 * 2

Для 3 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 3 + 305,687 * 3

в периферийном

Для 1 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 4 + 305,687 * 1

Для 2 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 4 + 305,687 * 2

Для 3 комн У = 348,349 + 35,788 * 74, 5 - 217,075 * 4 + 305,687 * 3

Глава 2. Кластерный анализ

Задание: Исследование структуры денежных расходов и сбережений населения.

В таблице представлена структура денежных расходов и сбережений населения по регионам Центрального федерального округа Российской федерации в 2003 г. Для следующих показателей:

·  ПТиОУ – покупка товаров и оплата услуг;

·  ОПиВ – обязательные платежи и взносы;

·  ПН – приобретение недвижимости;

·  ПФА – прирост финансовых активов;

·  ДР – прирост (уменьшение) денег на руках у населения.


Рис. 8 Исходные данные

Требуется:

1)  определить оптимальное количество кластеров для разбиения регионов на однородные группы по всем группировочным признакам одновременно;

2)  провести классификацию областей иерархическим методом с алгоритмом межгрупповых связей и отобразить результаты в виде дендрограммы;

3)  проанализировать основные приоритеты денежных расходов и сбережений в полученных кластерах;

4)  сравнить полученную классификацию с результатами применения алгоритма внутригрупповых связей.

Выполнение:

1)  Определить оптимальное количество кластеров для разбиения регионов на однородные группы по всем группировочным признакам одновременно;

Для определения оптимального количества кластеров нужно воспользоваться Иерархическим кластерным анализом и обратиться к таблице «Шаги агломерации» к столбцу «Коэффициенты».

Эти коэффициенты подразумевают расстояние между двумя кластерами, определенное на основании выбранной дистанционной меры (Евклидово расстояние). На том этапе, когда мера расстояния между двумя кластерами увеличивается скачкообразно, процесс объединения в новые кластеры необходимо остановить.

В итоге, оптимальным считается число кластеров, равное разности количества наблюдений (17) и номера шага (14),после которого коэффициент увеличивается скачкообразно. Таким образом, оптимальное количество кластеров равно 3. (Рис.9)

статистический математический анализ кластерный

Рис. 9 Таблица «Шаги агломерации»

2)  Провести классификацию областей иерархическим методом с алгоритмом межгрупповых связей и отобразить результаты в виде дендрограммы;

Теперь, используя оптимальное количество кластеров, проводим классификацию областей иерархическим методом. И в выходных данных обращаемся к таблице «Принадлежность к кластерам». (Рис.10)


Рис. 10 Таблица «Принадлежность к кластерам»

На Рис. 10 отчетливо видно, что в 3 кластер попали 2 области (Калужская, Московская) и г. Москва, во 2 кластер две (Брянская, Воронежская, Ивановская, Липецкая, Орловская, Рязанская, Смоленская, Тамбовская, Тверская), в 1 кластер – Белгородская, Владимирская, Костромская, Курская, Тульская, Ярославская.


Рис. 11 Дендрограмма

3)  проанализировать основные приоритеты денежных расходов и сбережений, в полученных кластерах;

Для анализа полученных кластеров нам нужно провести «Сравнение средних». В выходном окне выводится следующая таблица (Рис. 12)

Рис. 12 Средние значения переменных

В таблице «Средних значений» мы можем проследить, каким структурам отдается наибольший приоритет в распределении денежных расходов и сбережений населения.

В первую очередь стоит отметить, что самый высокий приоритет во всех областях отдается покупке товаров и оплате услуг. Большее значение параметр принимает в 3 кластере.


Информация о работе «Многомерный статистический анализ в системе SPSS»
Раздел: Экономико-математическое моделирование
Количество знаков с пробелами: 28596
Количество таблиц: 12
Количество изображений: 16

Похожие работы

Скачать
51022
14
7

... практический характер. Результаты, полученные в работе, могут быть использованы в дальнейших исследованиях по управлению риском и могут быть применены в банках. Глава 1. Обзор моделей оценки кредитного риска 1.1.  Понятие качества и прозрачности методик Проблема количественной оценки и анализа кредитных рисков и рейтингов заемщиков и создания резервов на случай дефолта является ...

Скачать
29836
0
0

... и т.д. Строятся доверительные интервалы для средних, дисперсий и коэффициентов корреляции, применяются подходящие критерии согласия. Используются методы дисперсионного, факторного и регрессионного анализа. При обобщении результатов исследования решается вопрос о репрезентативности выборки. Необходимо отметить, что эта последовательность действий, строго говоря, не является хронологической, за ...

Скачать
34425
10
7

... пятого кластера стали Санкт-Петербург, Свердловская область. А вот шестой кластер состоит лишь из одного региона России- Республики Ингушетии. Для создания качественного представления о социально-экономическом положении (различиях в имущественном обеспечении и неравенстве в доходах) очень полезно будет рассмотреть таблицу окончательных кластерных центров. Таблица 9 «Окончательные кластерные ...

Скачать
22050
0
0

... в странах Европы, школа по использованию математико-статистических методов и ЭВМ в исторических исследованиях под руководством И.Д. Ковальченко в СССР. Процесс комплексного применения количественных методов и информационных технологий при обработке исторических источников прошел в своем развитии два основных этапа. Первый этап охватил 1960-е – первую половину 1980-х гг., получив по определению ...

0 комментариев


Наверх