5. Механические свойства стали с мартенситной структурой

В табл. 2 приведены механические свойства стали 40 (0,4 % С) после термообработки (отпуска, закалки и отпуска).

Таблица 2

Структура и характер термообработки Механические свойства
σв, МПа σт, МПа НВ δ, % Ψ, %
П+Ф(отжиг) 600 250 140 33 55
Мартенсит (закалка) 1400 1100 570 2 3

Отпуск при 600°С

(сорбит отпуска)

620 410 170 20 64

Как видно из табл. 2, характерными свойствами стали с мартенситной структурой являются высокая твердость и малая пластичность. Установлено, что твердость мартенсита зависит от содержания углерода в стали и мало изменяется от наличия легирующих элементов (рис. 7)


Рис. 7. Влияние содержания углерода на твердость HRC мартенсита.

Хрупкость стали увеличивается с увеличением содержания углерода укрупнением мартенситных игл. Последняя имеет место при закалке стали с крупным зерном аустенита.

Высокую твердость мартенсита Г. В. Курдюмов объясняет мелкоблочным строением мартенситных кристаллов, границы которых сильно затрудняют перемещение дислокации.

Сильно развитая блочная структура закаленной малоуглеродистой стали является основной причиной её высокой статической прочности; роль углерода в этом незначительна. В высокоуглеродистой стали упрочняющая роль углерода весьма велика.

Установлено, что в закаленной малоуглеродистой стали при деформации дислокации некоторых типов отличаются большой подвижностью; они способствуют деформации стали без образования при этом трещин.

В кристаллах мартенсита высокоуглеродистой стали установлено образование двойников. Считается, что у этих сталей барьерами для дислокаций являются границы двойников, перед которыми дислокации скапливаются и создают очаг зарождения трещины. Этим объясняется высокая хрупкость закаленной высокоуглеродистой стали. Атомы углерода в решетке мартенсита оказывают дополнительное сопротивление движению дислокаций и, главное, придают температурную зависимость. Этим объясняют склонность закаленной углеродистой стали к хладноломкости.

Эти выводы имеют существенное значение при создании новых высокопрочных безуглеродистых сплавов типа мартенсито-стареющих, в которых высокий комплекс прочности и вязкости достигается мартенситной структурой, в которой отсутствует тормозящая роль примесей внедрения(в частности, углерода).

Наличие в структуре высокоуглеродистых и некоторых легированных сталей большого количества остаточного аустенита уменьшает твердость, износостойкость и прочность стали. Остаточный аустенит Аост оказывает отрицательное влияние и на некоторые другие свойства (уменьшается стабильность размеров деталей, ухудшается шлифуемость и т. д.).

Вязкость закаленной углеродистой стали невелика из-за неоднородности мартенсита, что приводит к концентрации напряжений. Вследствие этого возможно образование микротрещин, накопление которых приводит к потере пластичности и к хрупкому разрушению стали.

Легирование стали, как правило, сопровождается повышением однородности структуры, благодаря чему повышается истинная пластичность е и возрастает сопротивление вязкому разрушению SК. Этим же определяется повышение сопротивления хрупкому разрушению Sот легированных сталей в закаленном состоянии.

Сопротивление отрыву Sот закаленной стали резко понижается с увеличением содержания углерода. Так, при С=0.42 % сопротивление отрыву Sот = 1740 МПа, а при С=0.77 % составляет Sот = 630 МПа.


Заключение

В заключении мы можем сделать вывод о том, что мартенсит – структура, сильно отличающаяся по свойствам и строению от других продуктов превращений в сталях, при различных видах термообработки. Мартенситное превращение это основная цель такого технологического процесса как, закалка (или закалка на мартенсит), которая производится для повышение твёрдости, прочности и износостойкости, а также для подготовки к отпуску. Поэтому сложно недооценивать важность того как и при каких условиях происходит мартенситное превращение, это знание позволяет нам получать стали с нужными нам свойствами.


Список используемой литературы

1.  Мозберг Р.К. Материаловедение: Учеб. пособ. – 2-е издание., перераб – Москва Высш. шк., 1991. – 448с.

2.  Г.П. Фетисов, М.Г. Карпман В.М. Матюнин и др. Материаловедение и технология металлов – Москва Высш. шк., 2000. – 639с.

3.  Лахтин Ю. М., Леонтьева В.П. Материаловедение: Учебник для ВТУЗов – 3-е изд., перераб. и доп. – Москва: Машиностроение, 1990 – 528с.

4.  Арзамасов Б.Н., И.И. Сидорин, Г.Ф. Косолапов и др. Материаловедение: Учебник для ВТУЗов . – 2-е издание., испр. и доп. – Москва.: Машиностроение, 1986. – 384с.

5.  http://www.krugosvet.ru

6.  http://ru.wikipedia.org

7.  http://www.markmet.ru/

8.  http://www.metaltrade.ru


Информация о работе «Мартенситное превращение»
Раздел: Промышленность, производство
Количество знаков с пробелами: 18842
Количество таблиц: 2
Количество изображений: 6

Похожие работы

Скачать
206334
42
84

...  Роквеллу  НR Число твердости по Бринеллю НВ, кгс/мм2 Лабораторная работа № 3 Методы исследования качества, структуры и свойств металлов и сплавов Цель работы 1.  Изучить сущность, возможности и методику выполнения основных видов макроструктурного и микроструктурного ...

Скачать
18937
0
1

... циклов. Полезные космические грузы типа солнечных батарей или антенн спутников сейчас используют в основном пиротехнические способы раскрытия, которые создают множество проблем. Использование материалов с памятью формы позволит устранить все эти проблемы, также предоставит возможность неоднократно проверить работоспособность системы еще на земле. Недавнее исследование относительно Ni-Ti сплавов ...

Скачать
146065
37
47

... из газовой фазы. 2.2. Фазовые и структурные превращения при плазменном нагреве металлов   Несмотря на различие физических процессов, лежащих в основе того ими иного способа поверхностного упрочнения металлов (плазменного, лазерного, электронно-лучевого и т.д.), для всех характерна общая особенность - фазовые и струк­турные превращения протекают в условиях далеких от равновесия. Рассмотрим ...

Скачать
77363
0
0

... факторы, т.е. изменяющаяся температура и давление, для сплавов принята несколько иная форма зависимости с = к -ф + 1 при условии постоянства давления. С учетом правила фаз, как объясняющего процесс кристаллизации, кристаллизацию металлов, которая протекает при постоянной температуре можно объяснить следующим образом: С12 =1-1+1=1С2=1-2+1=0 С2`-3=1-1+1=1 Для двухкомпонентных систем, которые ...

0 комментариев


Наверх