1.2 Параболічна інтерполяція
Для визначення коефіцієнтів многочлена (3) необхідно мати вузлову точку. Аналітичне визначення коефіцієнтів інтерполяційного многочлена для точки зводиться до рішення системи лінійних рівнянь порядку, кожне з яких являє собою вираз (3), записаний для визначеної вузлової точки
, (4)
де .
Даним методом побудови інтерполяційного поліному зручно користуватися, маючи персональний комп’ютер і відповідні програми. Даний метод не є єдиним способом побудови інтерполяційного поліному. Інший підхід, яким часто користуються на практиці, називається методом Лагранжа[2].
1.3 Метод Лагранжа
Нехай при функція приймає відповідно значення . Многочлен степеня не вище , що приймає у вузлових точках задані значення, має вид:
(5)
Цей многочлен (5) називається інтерполяційною формулою Лагранжа і має такі властивості:
1. При заданій сукупності вузлових точок будова многочлена можлива тільки єдиним способом.
2. Многочлен Лагранжа може бути побудовано при будь-якому розташуванні вузлів інтерполяції (включаючи і нерівномірне).
У розгорнутому виді форма Лагранжа має вид:
(6)
При формула Лагранжа має вид:
, (7)
і називається формулою лінійної інтерполяції.
При одержимо формулу квадратичної інтерполяції:
(8)
1.4 Обернена інтерполяція
Нехай функція задана таблицею. Задача зворотної інтерполяції полягає в тому, щоб по заданому значенню функції визначити відповідне значення аргументу .
Якщо вузли інтерполяції нерівновіддалені, задача легко вирішується за допомогою інтерполяційної формули Лагранжа (5). Для цього достатньо прийняти за незалежну змінну, а вважати функцією. Тоді отримаємо
, (9)
Розглянемо тепер задачу оберненої інтерполяції для випадку рівновіддалених вузлів інтерполяції. Припустимо, що функція f(х) монотонна і дане значення у знаходиться між і .
Замінюючи функцію першим інтерполяційним многочленом Ньютона, одержимо:
.
Звідси
,
тобто .
Розмір визначаємо методом послідовних наближень як границю послідовності:
,
де
За початкове наближення приймаємо
. (10)
Для -го наближення маємо:
. (11)
На практиці ітераційний процес продовжують доти, поки не установляться значення, що відповідають необхідній точності, причому , де – останнє зі знайдених наближень. Знайдемо , визначаємо по формулі
,
звідки
. (12)
Ми застосували метод ітерації для розв’язку задачі оберненої інтерполяції, користуючись першою інтерполяційною формулою Ньютона. Аналогічно можна застосувати цей спосіб і до другої формули Ньютона:
.
Звідси
Позначимо – початкове наближення.
Для -го наближення маємо:
(13)
Знайдемо
,
визначимо по формулі [2,3]
.
Далі розглянемо запропоновану інтерполяційну формулу Бесселя. Вона подібна до інтерполяційної формули Стірлінга і обидві вони є похідними від першої та другої інтерполяційних формул Гаусса.
1.5 Інтерполяційна формула Бесселя
Часто використовується інтерполяційна формула Бесселя, яка служить для знаходження значення функції у міжвузловій точці. Для виведення цієї формули скористаємось другою інтерполяційною формулою Гаусса:
у скороченому вигляді:
де х=х0+qh.
Візьмемо 2n+2 рівновіддалених вузлів інтерполювання
x-n, x-(n-1),..., x0,..., xn-1, xn, xn+1 ,
з кроком h, і нехай
yi= f(xi), (i =-n,…,n+1),
- задані значення функції y= f(x).
Якщо вибрати за початкові значення x= x0 та y= y0, то, використовуючи вузли xk (k= 0, ±1, …, n), будемо мати:
(14)
Приймемо тепер за початкові значення х=х1 і у=у1 і використаємо вузли х1+к (к=0, 1,...,n). Тоді
причому відповідно індекси всіх різниць в правій частині формули (14) зростуть на одиницю. Замінивши в правій частині формули (14) q на q-1 і збільшивши індекси всіх різниць на 1 , отримаємо допоміжну інтерполяційну формулу
(15)
Взявши середнє арифметичне формул (14) і (15), після простих перетворень отримаємо інтерполяційну формулу Бесселя
інтерполяція функція бессель програма
(16)
Інтерполяційна формула Бесселя (16), як слідує з способу отримання її, представляє собою поліном, що співпадає з даною функцією y= f(x) в 2n+2 точках
x-n , x-(n-1),…, xn , xn+1.
В частинному випадку, при n=1, нехтуючи різницею ∆3y-1, отримаємо формулу квадратичної інтерполяції по Бесселю
,
В формулі Бесселя всі члени, які містять різниці непарного порядку, мають множник q-; тому при формула (16) значно спрощується :
Цей спеціальний випадок формули Бесселя називається формулою інтерполювання на середину. Якщо в формулі Бесселя (3) зробити заміну по формулі то вона приймає більш симетричний вид
Приклад розв’язку задачі:
Значення функції подано у табл. 2. Знайти значення .
Таблиця 2- Таблиця різниць функції
2 | -4.58579 | ||||||||
-11.68216 | |||||||||
3 | -16.26795 | -6.04989 | |||||||
-17.73205 | 0.01801 | ||||||||
4 | -34 | -6.03188 | -0.00878 | ||||||
-23.76393 | 0.00923 | 0.00504 | |||||||
5 | -57.76393 | -6.02265 | -0.00374 | -0.00321 | |||||
-29.78658 | 0.00549 | 0.00183 | 0.00218 | ||||||
6 | -87.55051 | -6.01716 | -0.00191 | -0.00103 | -0.00287 | ||||
-35.80374 | 0.00358 | 0.0008 | 0.00069 | ||||||
7 | -123.35425 | -6.01358 | -0.00111 | -0.00034 | |||||
-41.81732 | 0.00247 | 0.00046 | |||||||
8 | -165.17157 | -6.01111 | -0.00065 | ||||||
-47.82843 | 0.00182 | ||||||||
9 | -213 | -6.00929 | |||||||
-53.83772 | |||||||||
10 | -266.83772 |
Розв’язок:
Приймемо і , тоді
.
Оскільки , то скористаємося формулою Бесселя. Маємо:
;
Звідси, використовуючи підкреслені різниці, отримаєм:
... функцію задано аналітичнo, але її вираз досить складний і незручний для виконання різних математичних операцій (диференціювання, інтегрування тощо). 2 Розробка алгоритмів моделювання зміни температури термопари за допомогою чисельних методів на ЕОМ 2.1 Планування вхідних та вихідних даних Для розв’язання поставленої задачі потрібні певні вхідні данні, на основі яких будуть проводитись ...
... є допустимих значень зазначених в агротехнічних вимогах до посіву зернових. На основі теоретичних та експериментальних досліджень, визначено основні параметри технологічного процесу ремонту спрацьованих дисків сошників зернових сівалок із відновленням їхнього зовнішнього діаметра. Економічна оцінка ефективності техпроцесу ремонту дисків показала, що із застосуванням розробленого способу ремонту ...
... дослідження і дозволяє об’єктивно оцінити науково-технічний рівень питання, що вивчається. Вибрати шляхи і методи для досягнення поставленої мети. Після обґрунтування проблеми і встановлення її структури науковець вибирає тему наукового дослідження, це буває більш складно ніж провести саме дослідження. До теми пред’являється ряд вимог. Вона повинна бути актуальною, тобто важливою, яка вимагає ...
... ТЕОРІЇ ЙМОВІРНОСТЕЙ 1. Поняття та закон розподілу системи випадкових величин До цього часу ми розглядали одномірну випадкову величину X. Однак в сучасній теорії математичної обробки результатів багаторазових повторних геодезичних вимірювань використовують багатомірні випадкові величини. Багатомірна випадкова величина може складатися із декількох компонентів і бути двомірною, тримірною і так ...
0 комментариев