Построение математических моделей прогнозирования объема продаж

114563
знака
30
таблиц
1
изображение

2.2 Построение математических моделей прогнозирования объема продаж

Безусловно, в условиях рыночной экономики, главным показателем рентабельности предприятия является прибыль. И здесь незаменимы методы математической статистики, которые позволяют правильно оценить, какие факторы, и в какой степени влияют на прибыль, а так же на основании правильно построенной математической модели, спрогнозировать прибыль на будущий период.

Проведем статистический анализ исходных данных, полученных при исследовании основных показателей деятельности предприятия, с целью выявления доминирующих факторов влияющих на прибыль и построения адекватной математической модели для изучения возможностей ее максимизации и прогнозирования на последующие периоды.

Исходные данные для поставленного задания приведены в таблице 4.


Таблица 4 Исходные данные для регрессионного анализа

 

Прибыль Коэффициент качества продукции Доля в общем объеме продаж Розничная цена Коэффициент издержек на 1 продукции Удовлетворение условий розничных торговцев

1

2

3

4

5

6

7

Y, %

X1

X2

X3

X4

X5

1 1,99 1,22 1,24 1,3 35,19 2,08
2 12,21 1,45 1,54 1,04 80 1,09
3 23,07 1,9 1,31 1 23,31 2,28
4 24,14 2,53 1,36 1,64 80 1,44
5 35,05 3,41 2,65 1,19 80 1,75
6 36,87 1,96 1,63 1,26 68,84 1,54
7 4,7 2,71 1,66 1,28 80 0,47
8 58,45 1,76 1,4 1,42 30,32 2,51
9 59,55 2,09 2,61 1,65 80 2,81
10 61,42 1,1 2,42 1,24 32,94 0,59
11 61,51 3,62 3,5 1,09 28,56 0,64
12 61,95 3,53 1,29 1,29 78,75 1,73
13 71,24 2,09 2,44 1,65 38,63 1,83
14 71,45 1,54 2,6 1,19 48,67 0,76
15 81,88 2,41 2,11 1,64 40,83 0,14
16 10,08 3,64 2,06 1,46 80 3,53
17 10,25 2,61 1,85 1,59 80 2,13
18 10,81 2,62 2,28 1,57 80 3,86
19 11,09 3,29 4,07 1,78 80 1,28
20 12,64 1,24 1,84 1,38 31,2 4,25
21 12,92 1,37 1,9 1,55 29,49 3,98

Основная цель первой части задания оценить влияние на прибыль предприятия от реализации продукции одного вида следующих факторов:

- Х1 - коэффициент качества продукции;

- Х2 - доля в общем объеме продаж;

- Х3 – розничная цена продукции;

- Х4 – коэффициент издержек на единицу продукции;

- Х5 – удовлетворение условий розничных торговцев.

Необходимо, применив регрессионные методы анализа, построить математическую модель зависимости прибыли от некоторых (или всех) из вышеперечисленных факторов и проверить адекватность полученной модели.

Прежде чем применить данным метод регрессионного анализа, необходимо провести некоторый предварительный анализ имеющихся в распоряжении выборок. Это позволит сделать выводы о качестве имеющихся данных, а именно: о наличии или отсутствии тренда, нормальном законе распределения выборки, оценить некоторые статистические характеристики и так далее.

Для всех последующих расчетов примем уровень значимости 0,05, что соответствует 5% вероятности ошибки.

Исследование выборки по прибыли (Y).

- Математическое ожидание (арифметическое среднее) 34,91761905.

- Доверительный интервал для математического ожидания (22,75083;47,08441).

- Дисперсия (рассеивание) 714,402159.

- Доверительный интервал для дисперсии (439,0531; 1564,384).

- Средне квадратичное отклонение (от среднего) 26,72830258.

- Медиана выборки 24,14.

- Размах выборки 79,89.

- Асимметрия (смещение от нормального распределения) 0,370221636.

- Эксцесс выборки (отклонение от нормального распределения) -1,551701276.

- Коэффициент вариации (коэффициент представительности среднего) 77%.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия серий. Результаты проверки представлены в таблице 5 (2-й столбец). Сумма серий равняется 5. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 5 до 15, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия инверсий. Количество инверсий представлено в таблице 5 (3-й столбец). Сумма инверсий равняется 81. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 64 до 125, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Таблица 5 Критерии серий и инверсий

Прибыль Y % Критерий серий Критерий инверсий
1 2 3
1,99 - 0
12,21 - 5
23,07 - 7
24,14 + 7
35,05 + 7
36,87 + 7
4,7 - 0
58,45 + 6
59,55 + 6
61,42 + 6
61,51 + 6
61,95 + 6
71,24 + 6
71,45 + 6
81,88 + 6
10,08 - 0
10,25 - 0
10,81 - 0
11,09 - 0
12,64 - 0
12,92 - 0
Итого 5 81

Проверка гипотезы о нормальном законе распределения выборки с применением критерия . Разобьем выборку на интервалы группировки длиной 0,4*среднеквадратичное отклонение = 10,69132103. Получим следующее количество интервалов группировки размах/длина интервала=7.Все данные о границах интервалов, теоретических и эмпирических частотах приведены в таблице 6

Таблица 6 Критерий

Интервалы группировки Теоретическая частота Расчетная частота
1 2 3
12,68132103 0,221751084 4
23,37264207 0,285525351 2
34,0639631 0,313282748 1
44,75528414 0,2929147 2
55,44660517 0,233377369 0
66,1379262 0,158448887 5
76,82924724 0,091671119 2

Результирующее значение критерия 2,11526E-55 значительно меньше табличного 12,6 – следовательно, гипотеза о нормальности закона распределения принимается с уровнем значимости 0,05.

Исследование выборки по коэффициенту качества продукции (Х1).

- Математическое ожидание (арифметическое среднее) 2,29.

- Доверительный интервал для математического ожидания (1,905859236; 2,674140764).

- Дисперсия (рассеивание) 0,71215.

- Доверительный интервал для дисперсии (0,437669008; 1,559452555).

- Средне квадратичное отклонение (от среднего) 0,843889803.

- Медиана выборки 2,09.

- Размах выборки 2,54.

- Асимметрия (смещение от нормального распределения) 0,290734565.

- Эксцесс выборки (отклонение от нормального распределения) -1,161500717.

- Коэффициент вариации (коэффициент представительности среднего) 37%.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия серий. Результаты проверки представлены в таблице 7 (2-й столбец). Сумма серий равняется 11. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 5 до 15, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается. Проверка статистической независимости выборки (проверка наличия тренда) методом критерия инверсий. Количество инверсий представлено в таблице 7 (3-й столбец). Сумма инверсий равняется 89. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 64 до 125, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Таблица 7 Критерии серий и инверсий

Коэффициент качества продукции Х1 Критерий серий Критерий инверсий
1 2 3
1,22 - 1
1,45 - 3
1,9 - 5
2,53 + 9
3,41 + 13
1,96 - 5
2,71 + 10
1,76 - 4
2,09 + 4
1,1 - 0
3,62 + 9
3,53 + 8
2,09 + 3
1,54 - 2
2,41 + 2
3,64 + 5
2,61 + 2
2,62 + 2
3,29 + 2
1,24 - 0
1,37 - 0
Итого 11 89

Проверка гипотезы о нормальном законе распределения выборки с применением критерия . Разобьем выборку на интервалы группировки длиной 0,4*среднеквадратичное отклонение = 0,337555921. Получим следующее количество интервалов группировки размах/длина интервала=7. Все данные о границах интервалов, теоретических и эмпирических частотах приведены в таблице 8

Таблица 8 Критерий

Интервалы группировки Теоретическая частота Расчетная частота
1 2 3
1,437555921 5,960349765 4
1,775111843 8,241512255 3
2,112667764 9,71079877 4
2,450223685 9,750252967 1
2,787779606 8,342374753 4
3,125335528 6,082419779 0
3,462891449 3,778991954 2

Результирующее значение критерия 0,000980756 значительно меньше табличного 12,6 – следовательно, гипотеза о нормальности закона распределения принимается с уровнем значимости 0,05.

Исследование выборки по доле в общем объеме продаж (Х2).

- Математическое ожидание (арифметическое среднее) 2,083809524.

- Доверительный интервал для математического ожидания (1,748443949; 2,419175098).

- Дисперсия (рассеивание) 0,542784762.

- Доверительный интервал для дисперсии (0,333581504; 1,188579771).

- Средне квадратичное отклонение (от среднего) 0,736739277.

- Медиана выборки 1,9.

- Размах выборки 2,83.

- Асимметрия (смещение от нормального распределения) 1,189037981.

- Эксцесс выборки (отклонение от нормального распределения) 1,48713312.

- Коэффициент вариации (коэффициент представительности среднего) 35%.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия серий. Результаты проверки представлены в таблице 9 (2-й столбец). Сумма серий равняется 11. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 5 до 15, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия инверсий. Количество инверсий представлено в таблице 9 (3-й столбец). Сумма инверсий равняется 89. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 64 до 125, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Таблица 9 Критерии серий и инверсий

Коэффициент качества продукции Х2 Критерий серий Критерий инверсий
1 2 3
1,24 - 0
1,54 - 4
1,31 - 1
1,36 - 1
2,65 + 14
1,63 - 2
1,66 - 2
1,4 - 1
2,61 + 10
2,42 + 7
3,5 + 9
1,29 - 9
2,44 + 6
1 2 3
2,6 + 6
2,11 + 4
2,06 + 3
1,85 - 1
2,28 + 2
4,07 + 2
1,84 - 0
1,9 + 0
Итого 10 84

Проверка гипотезы о нормальном законе распределения выборки с применением критерия . Разобьем выборку на интервалы группировки длиной 0,4*среднеквадратичное отклонение = 0,294695711. Получим следующее количество интервалов группировки размах/длина интервала=9. Все данные о границах интервалов, теоретических и эмпирических частотах приведены в таблице 10

Таблица 10 Критерий

Интервалы группировки Теоретическая частота Расчетная частота
1 2 3
1,534695711 8,613638207 5
1,829391421 10,71322271 3
2,124087132 11,35446101 5
2,418782843 10,25476697 1
2,713478553 7,892197623 5
3,008174264 5,175865594 0
3,302869975 2,892550245 0
3,597565686 1,377500344 1
3,892261396 0,559004628 1

Результирующее значение критерия 0,000201468 значительно меньше табличного 12,6 – следовательно, гипотеза о нормальности закона распределения принимается с уровнем значимости 0,05.

Исследование выборки по розничной цене (Х3).

- Математическое ожидание (арифметическое среднее) 1,390952381.

- Доверительный интервал для математического ожидания (1,287631388; 1,- 94273374).

- Дисперсия (рассеивание) 0,051519048.

- Доверительный интервал для дисперсии (0,031662277; 0,112815433).

- Средне квадратичное отклонение (от среднего) 0,226978077.

- Медиана выборки 1,38.

- Размах выборки 0,78.

- Асимметрия (смещение от нормального распределения) -0,060264426.

- Эксцесс выборки (отклонение от нормального распределения) -1,116579819.

- Коэффициент вариации (коэффициент представительности среднего) 16%.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия серий. Результаты проверки представлены в таблице 11(2-й столбец). Сумма серий равняется 8. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 5 до 15, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия инверсий. Количество инверсий представлено в таблице 11 (3-й столбец). Сумма инверсий равняется 68. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 64 до 125, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.


Таблица 11 Критерии серий и инверсий

Розничная цена Х4 Критерий серий Критерий инверсий
1 2 3
1,3 - 9
1,04 - 1
1 - 0
1,64 + 13
1,19 - 1
1,26 - 3
1,28 - 3
1,42 + 5
1,65 + 10
1,24 - 2
1,09 - 0
1,29 - 1
1,65 + 7
1,19 - 0
1,64 + 5
1,46 + 1
1,59 + 3
1,57 + 2
1,78 + 2
1,38 + 0
1,55 + 0
Итого 8 68

Проверка гипотезы о нормальном законе распределения выборки с применением критерия . Разобьем выборку на интервалы группировки длиной 0,4*среднеквадратичное отклонение = 0,090791231. Получим следующее количество интервалов группировки размах/длина интервала=8. Все данные о границах интервалов, теоретических и эмпирических частотах приведены в таблице 12


Таблица 12 Критерий

Интервалы группировки Теоретическая частота Расчетная частота
1 2 3
1,090791231 15,39563075 3
1,181582462 24,12028441 0
1,272373693 32,20180718 4
1,363164924 36,63455739 3
1,453956155 35,51522214 2
1,544747386 29,33938492 1
1,635538617 20,65381855 3
1,726329848 12,38975141 4

Результирующее значение критерия 3,27644E-33 значительно меньше табличного 12,6 – следовательно, гипотеза о нормальности закона распределения принимается с уровнем значимости 0,05.

Исследование выборки по коэффициенту издержек на единицу продукции (Х4).

- Математическое ожидание (арифметическое среднее) 57,46333333.

- Доверительный интервал для математического ожидания (46,70536237; 68- 22130429).

- Дисперсия (рассеивание) 558,5363233.

- Доверительный интервал для дисперсии (343,2620073; 1223,072241).

- Средне квадратичное отклонение (от среднего) 23,63337308.

- Медиана выборки 68,84.

- Размах выборки 56,69.

- Асимметрия (смещение от нормального распределения) --0,199328538.

- Эксцесс выборки (отклонение от нормального распределения) -1,982514776.

- Коэффициент вариации (коэффициент представительности среднего) 41%.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия серий. Результаты проверки представлены в таблице 13 (2-й столбец). Сумма серий равняется 11. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 5 до 15, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия инверсий. Количество инверсий представлено в таблице 13 (3-й столбец). Сумма инверсий равняется 89. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 64 до 125, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Таблица 13 Критерии серий и инверсий

Розничная цена Х4 Критерий серий Критерий инверсий
1 2 3
35,19 - 6
80 + 11
23,31 - 0
80 + 10
80 + 10
68,84 + 8
80 + 9
30,32 - 3
80 + 8
32,94 - 3
28,56 - 0
78,75 + 5
38,63 - 2
48,67 - 3
40,83 - 2
80 + 2
80 + 2
80 + 2
80 + 2
31,2 - 1
29,49 - 0
Итого 11 89

Проверка гипотезы о нормальном законе распределения выборки с применением критерия . Разобьем выборку на интервалы группировки длиной 0,4*среднеквадратичное отклонение = 9,453349234. Получим следующее количество интервалов группировки размах/длина интервала=5.Все данные о границах интервалов, теоретических и эмпирических частотах приведены в таблице 14

Таблица 14 Критерий

Интервалы группировки Теоретическая частота Расчетная частота
1 2 3
32,76334923 0,205311711 5
42,21669847 0,287891016 4
51,6700477 0,343997578 1
61,12339693 0,350264029 0
70,57674617 0,30391251 1

Результирующее значение критерия 3,27644E-33 значительно меньше табличного 12,6 – следовательно, гипотеза о нормальности закона распределения принимается с уровнем значимости 0,05.

Исследование выборки по коэффициенту удовлетворения условий розничных торговцев (Х5).

- Математическое ожидание (арифметическое среднее) 1,937619048.

- Доверительный интервал для математического ожидания (1,390131506; 2,485106589).

- Дисперсия (рассеивание) 1,446569048.

- Доверительный интервал для дисперсии (0,889023998; 3,167669447).

- Средне квадратичное отклонение (от среднего) 1,202733989.

- Медиана выборки 1,75.

- Размах выборки 4,11.

- Асимметрия (смещение от нормального распределения) --0,527141402.

- Эксцесс выборки (отклонение от нормального распределения) -0,580795634.

- Коэффициент вариации (коэффициент представительности среднего) 62%.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия серий. Результаты проверки представлены в таблице 15 (2-й столбец). Сумма серий равняется 13. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 5 до 15, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Проверка статистической независимости выборки (проверка наличия тренда) методом критерия инверсий. Количество инверсий представлено в таблице 15 (3-й столбец). Сумма инверсий равняется 80. Поскольку данное значение попадает в доверительный интервал (табличные значения) от 64 до 125, следовательно, гипотеза о статистической независимости и отсутствии тренда подтверждается.

Таблица 15 Критерии серий и инверсий

Розничная цена Х4 Критерий серий Критерий инверсий
1 2 3
2,08 + 12
1,09 - 5
2,28 + 12
1,44 - 6
1,75 + 8
1,54 - 6
0,47 - 1
2,51 + 8
2,81 + 8
0,59 - 1
0,64 - 1
1,73 - 3
1,83 + 3
0,76 - 1
0,14 - 0
3,53 + 2
2,13 + 1
3,86 + 1
1,28 - 0
4,25 + 1
3,98 + 0
Итого 13 80

Проверка гипотезы о нормальном законе распределения выборки с применением критерия . Разобьем выборку на интервалы группировки длиной 0,4*среднеквадратичное отклонение = 0,481093595. Получим следующее количество интервалов группировки размах/длина интервала=8.Все данные о границах интервалов, теоретических и эмпирических частотах приведены в таблице 16

Таблица 16 Критерий

Интервалы группировки Теоретическая частота Расчетная частота
1 2 3
0,621093595 3,826307965 3
1,102187191 5,47254967 3
1,583280786 6,669793454 3
2,064374382 6,927043919 3
2,545467977 6,130506823 4
3,026561573 4,623359901 1
3,507655168 2,971200139 0
3,988748764 1,627117793 3

Результирующее значение критерия 0,066231679 значительно меньше табличного 12,6 – следовательно, гипотеза о нормальности закона распределения принимается с уровнем значимости 0,05.

Для оценки степени зависимости между переменными модели построим корреляционную матрицу, и для каждого коэффициента корреляции в матрице рассчитаем V-функцию, которая служит для проверки гипотезы об отсутствии корреляции между переменными.

Таблица 17 Корреляционная матрица

Y X1 X2 X3 X4 X5
1 2 3 4 5 6 7 8
Y R 0,95238 0,00950 0,21252 -0,01090 -0,30012 -0,42102
V 8,30380 0,04247 0,96511 -0,04873 -1,38479 -2,00769
X1 R 0,00950 0,95238 0,36487 0,13969 0,50352 -0,12555
V 0,04247 8,30380 1,71054 0,62883 2,47761 -0,56445
X2 R 0,21252 0,36487 0,95238 0,23645 0,06095 -0,19187
V 0,96511 1,71054 8,30380 1,07781 0,27291 -0,86885
X3 R -0,01090 0,13969 0,23645 0,95238 0,24228 0,25014
V -0,04873 0,62883 1,07781 8,30380 1,10549 1,14293
X4 R -0,30012 0,50352 0,06095 0,24228 0,95238 -0,03955
V -1,38479 2,47761 0,27291 1,10549 8,30380 -0,17694
X5 R -0,42102 -0,12555 -0,19187 0,25014 -0,03955 0,95238
V -2,00769 -0,56445 -0,86885 1,14293 -0,17694 8,30380

Гипотеза о нулевой корреляции принимается при –1,96<V<1,96, значения, для которых это условие не выполняется, выделены жирным шрифтом цветом. Следовательно, значимая зависимость имеет место между Y и Х5, а также Х1 и Х4.

Для построения математической модели выдвинем гипотезу о наличии линейной зависимости между прибылью (иначе Y) и факторами на нее влияющими (Х1, Х2, Х3, Х4, Х5). Следовательно, математическая модель может быть описана уравнением вида:

,(2.2.1)

где  - линейно-независимые постоянные коэффициенты.

Для их отыскания применим множественный регрессионный анализ. Результаты регрессии сведены в таблицы 18-20

Таблица 18 Регрессионная статистика

1 2
Множественный R 0,609479083
R-квадрат 0,371464753
Нормированный R-квадрат 0,161953004
Стандартная ошибка 24,46839969
Наблюдения 21

Таблица 19 Дисперсионная таблица

Степени свободы SS MS F Значимость F
1 2 3 4 5 6
Регрессия 5 5307,504428 1061,500886 1,773002013 0,179049934
Остаток 15 8980,538753 598,7025835
Итого 20 14288,04318

Таблица 20 Коэффициенты регрессии

Коэффициенты Стандартная ошибка t-статистика P-Значение Нижние 95% Верхние 95% Нижние 95,0% Верхние 95,0%
1 2 3 4 5 6 7 8 9
B0 38,950215 35,7610264 1,0891805 0,29326 -37,272 115,173 -37,2726 115,173
B1 4,5371110 8,42440677 0,5385674 0,59808 -13,419 22,4933 -13,4190 22,4933
B2 1,8305781 8,73999438 0,2094484 0,83691 -16,798 20,4594 -16,7982 20,4594
B3 23,645979 27,4788285 0,8605162 0,40304 -34,923 82,2157 -34,9237 82,2157
B4 -0,526248 0,28793074 -1,827690 0,08755 -1,1399 0,08746 -1,13995 0,08746
B5 -10,780037 4,95649626 -2,174931 0,04604 -21,344 -0,21550 -21,3445 -0,21550

Таким образом, уравнение, описывающее математическую модель, приобретает вид:

Y=4,53711108952303*X1+1,830578196*X2+23,64597929*X3- 0,526248308*X5-10,78003746*X5+38,95021506. (2.2.2)

Для оценки влияния каждого из факторов на результирующую математическую модель применим метод множественной линейной регрессии к нормированным значениям переменных , результаты пересчета коэффициентов приведены в таблице 21

Таблица 21 Оценка влияния факторов

Коэффициенты Стандартная ошибка t-статистика
1 2 3 4
Y-пересечение 38,95021506 35,76102644 1,089180567
Переменная X 1 3,828821785 7,109270974 0,538567428
Переменная X 2 1,348658856 6,439097143 0,209448441
Переменная X 3 5,367118917 6,237091662 0,86051628
Переменная X 4 -12,43702261 6,804774783 -1,827690556
Переменная X 5 -12,96551745 5,961346518 -2,174931018

Коэффициенты в таблице 21 показывают степень влияния каждой из переменных на результат (Y). Чем больше коэффициент, тем сильнее прямая зависимость (отрицательные коэффициенты показывают обратную зависимость).

F-критерий из таблицы 19 показывает степень адекватности полученной математической модели.



Информация о работе «Теоретические аспекты управления доходами и расходами»
Раздел: Финансовые науки
Количество знаков с пробелами: 114563
Количество таблиц: 30
Количество изображений: 1

Похожие работы

Скачать
37055
0
3

... проведения повседневной и целенаправленной работы по организации и управлению бюджетным процессом. Предметом исследования являются процессы управления доходами и расходами бюджета муниципального образования. - сбор необходимого материала для проведения научных изысканий; - получение опыта самостоятельной научно-исследовательской работы. Финансовая политика органов местного самоуправления имеет ...

Скачать
120778
9
3

... в объеме имеющихся полномочий применительно к средствам федерального бюджета.     2. Общие сведения об объекте исследования деятельности Федерального Казначейства.   2.1. Характеристика объекта исследования В любой стране бюджет-это наиболее точная форма выражения существа государственной власти, а процесс его исполнения наглядно демонстрирует ее настоящий ...

Скачать
99308
18
9

... ) нормативов осуществляется по завершении данного бюджетного периода в процессе разработки бюджета на новый бюджетный период. 1.4 Влияние режимов налогообложения на уровень доходов индивидуальных предпринимателей Организация и ведение бухгалтерского и налогового учета зависит от того, какую систему налогообложения выберет налогоплательщик – индивидуальный предприниматель. Требования к ...

Скачать
166606
15
1

... помощи уволенным работникам в трудоустройстве, проведение информационно-разъяснительной работы. Глава 3. Усиление роли социальных аспектов в управлении персоналом в ООО «ТверьИнформПродукт»   3.1 Рекомендации по совершенствованию системы адаптации и профориентации сотрудников организации Основанием для совершенствования системы адаптации служит тот факт, что эффективной системы ...

0 комментариев


Наверх