8.3 Результаты дорожных и сравнительных исследований характеристик и состояния рулевого привода
Исследования показали удовлетворительные результаты использования разработанного метода измерения смещений в РП и рулевых шарнирах.
Так, в режиме прямолинейного движения со свободным рулём на асфальтобетонном шоссе со скоростью 8,4 м/с осциллографическая запись, (рис.13) показала, что величина смещений элементов рулевых шарниров не превышает 0,15-0,18 мм, а усилий в рулевом приводе - 12-15даН
Частота колебаний шарового пальца в наконечнике тяги в этом режиме составила 3,5-4 Гц. Причём, наблюдались участки силового замыкания элементов рулевых шарниров в моменты времени 0,75-1,05 сек.
Увеличение скорости до 16,8 м/с при фиксированном РК (рис. 14) приводит к возникновению высокочастотных колебаний усилий в РП, причём частота колебания усилия на левом поворотном рычаге цапфы в 1,05 – 1,15 раза больше, чем на правом. Это объясняется меньшей жёсткостью правой половины РП за счёт маятникового рычага и оправдывает введение коэффициента. Частота колебаний шарового пальца в наконечниках рулевых тяг при этом уменьшается до 2-2,5 Гц, однако амплитуда увеличивается в 2-2,5 раза, достигая 0,35-0,45 мм. При этом области силового замыкания элементов рулевых шарниров наблюдаются в 2,5-3 раза реже и по времени они занимают не более 0,5-0,75 сек.
Рис.5.13. Осциллографическая запись усилий на рулевой сошке, правом и левом поворотных рычагах цапфы 2 относительных смещений шарового пальца в
В отмеченных режимах испытаний смещения в правом и левом рулевых шарнирах происходят примерно одновременно. Причём, синхронность не нарушается ни при увеличении скорости, ни при движении со свободным или фиксированным рулевым колесом. Смещения элементов рулевых шарниров, складываясь, вызывают изменение схождения на 35-40%, что доказывает целесообразность введения средней величины смещений.
Характер изменения смещения шарового пальца относительно наконечника тяги от усилия на поворотном рычаге за 1 сек после начала разгона на прямолинейном участке при фиксированном РК со скорости 11,2 м/с (рис. 15) аналогичен этим же зависимостям, полученным в стендовых и сравнительных исследованиях, что доказывает целесообразность применения разработанной методики оценки эксплуатационного состояния РП и режимы его нагружения. Величина смещений для левого рулевого шарнира испытуемого автомобиля на 12-15% больше правого.
Движение по прямолинейной траектории и фиксированным РК со скоростью 16,4 м/с по щебёночному покрытию характеризуется резким увеличением амплитуды колебаний смещения в рулевом приводе (рис. 16).Частота колебаний в низкочастотной области при этом 0,5-0,75 Гц.
Режим неустановившегося движения в момент входа в поворот (3-5 сек) для радиуса поворота и скорости, обеспечивающих боковое ускорение 4 м/с2, характеризуется резким колебанием величины и направления усилия, а также смещения в РП, т.к. моменты на рулевой сошке и УК имеют разные знаки. Это приводит к снижению чувствительности испытуемого автомобиля к управлению.
Результаты осциллографирования, обработанные на ЭВМ , приведены на рисунке 17, где показана зависимость изменения критерия качества РП в течении 3 сек после начала входа в поворот. Причём вход испытуемого автомобиля в правый поворот характеризуется более интенсивным нарастанием усилия в левой половине РП и относительно резким приращением смещения. При входе в левый поворот большее влияние имеют упругие деформации, усилие и смещение в РП нарастают более плавно.
Вход автомобиля в поворот при тех же условиях, но на щебеночном покрытии характеризуется значительными колебаниями смещений в РП, достигающими 0,5-0,75 мм от средней величины в момент входа в поворот.
Рис.1
Рис. 16. Экспериментальная зависимость изменения смещений в РП от времени в процессе рулевым колесом
Рис. 18. Экспериментальные зависимости изменения смещений в РП от усилия в нем в процессе выхода автомобиля из поворота: Л - левого, П - правого со скорости 11,2 м/с со свободным рулём.
На рисунке 18 показана зависимость изменения критерия качества РП в течение 3 сек после начала выхода из поворота. При выходе из левого поворота более упругая правая часть РП определяет плавное изменение смещений в РП, а при выходе из правого поворота формирование смещений в РП определяет левая часть рулевого привода, где преобладают зазоры, отчего выше интенсивность изменения смещений. Однако значительных колебаний смещений в РП в этом режиме не наблюдалось, что позволяет считать влияние критерия качества РП на ЭС менее существенным.
Смещения в рулевом приводе в наибольшей степени влияют на изменение курсовой устойчивости автомобиля в режиме торможения. Так, осциллограммы усилий на поворотных рычагах и рулевой сошке, а также относительных смещений в рулевых шарнирах в процессе служебного торможения со скорости 11,2 м/с показывают, что в момент начала торможении на поворотных рычагах наблюдается резкий скачок усилия, который через 0,25с передаётся на рулевую сошку и вызывает смещение в шарнире 0,5-0,55 мм.
Из рисунка 19 следует, что резкое увеличение смещений начинается с усилия на поворотном рычаге цапфы 20 даН и стабилизируется при 35 даН, а их величина достигает 0,55 мм для левого и 0,43 мм для правого шарниров. Нагрузки и смещения в РП носят ударный характер.
Зависимости изменения смещений в РП от усилия в процессе экстренного и служебного торможения с начальной скорости 2,2,4 м/с приведены на рисунке 20. Отсюда следует, что при служебном торможении интенсивность нарастания усилия в РП имеет меньшую величину, чем при экстренном торможении, что сказывается на смещении в рулевом приводе.
В случае экстренного торможения зависимость смещений в РП от усилий имеет два экстремума, а величина смещения резко увеличивается с 1мм при 30 даН до 4,5 мм при 60 даН, после чего интенсивность нарастания смещения в РП стабилизируется. Для служебного торможения характерно более плавное нарастание смещений в РП, а его резкое приращение начинается при достижении усилия в РП 60 даН.
Процесс экстренного торможения с одновременным поворотом вызывает наибольшее из всех исследованных режимов нагружение РП. Смещения в кинематической цепи рулевого привода в этом режиме суммируются как от действия сил сжатия в рулевой трапеции, так и от соотношения углов поворота управляемых колёс. Причём в этом режиме нагрузки на поворотные рычаги достигают I20-I50 даН для испытуемого автомобиля, а смещения в рулевом приводе - 8-10 мм.
Рис.20 Зависимости изменения смещений в РП от усилия в нём в процессе (в течении 3 с} экстренного - Э и служебного - С торможения со скорости 22,4 м/с с фиксированным рулевым колесом
Характер изменения критерия качества РП в процессе экстренного торможения с одновременным поворотом следует из зависимостей, полученных экспериментальным и расчётным путём, приведённых на рисунке 21. При этом кривая зависимости смещения в рулевом приводе от усилия в нем как и в случае экстренного торможения имеет два экстремума, но резкое нарастание смещения прекращается только при достижении усилия в РП I05-IIO даН, его наибольшая интенсивность нарастания наблюдается в диапазоне 60-70 даН. Причём наблюдалось удовлетворительное согласие расчётных и экспериментальных зависимостей - расхождение не превышает 8-10%.
Дорожные испытания показали, что в процессе установившегося кругового движения в кинематической цепи рулевого привода наступает силовое замыкание элементов подвижных сопряжении, что определяет начальную величину смещений в РП и исключает её колебание.
Сравнительные испытания экипированного для дорожных исследований автомобиля на стенде показали, что диапазон усилий, создаваемых в рулевом приводе в процессе оценки его эксплуатационного состояния, соответствует значениям усилий в наиболее характерных в эксплуатации режимах движения автомобиля и полностью дает представление о характеристиках и состоянии рулевого привода конкретного испытуемого автомобиля. Эти же результаты использованы для разметки специальных плат блока логики стенда для оценки эксплуатационного состояния РП.
Таким образом, дорожные и сравнительные исследования показали удовлетворительное согласие расчётных и экспериментальных данных, расхождение которых в среднем не превышало 7-8%. Кроме того, была также подтверждена целесообразность применения одномассовой математической модели для определения стабилизирующих моментов на управляемых колёсах.
Результаты испытаний показали также, что в рулевом приводе производится значительная работа упругих деформаций по компенсации колебаний управляемых колёс и обеспечению курсовой устойчивости. Работа необратимых смещений при этом также существенно влияет на обеспечение траекторией устойчивости, но снижает управляемость и повышает утомляемость водителя.
Рис. 21. Зависимость изменения смещений в РП от усилия в ном в процессе (в течении-3 с) экстренного торможения с одновременным поворотом влево со скорости 22,4 м/с (расчётная и экспериментальная)
... и др., а также приобретен преподавателями ВУЗов ценный опыт ездовых испытаний автомобилей. 3. Оценка параметров устойчивости и управляемости АТС в стендовых условиях Устойчивость и управляемость АТС в значительной степени определяют активную безопасность автотранспортных средств (АТС) и, следовательно, общий уровень безопасности дорожного движения (БДД). В настоящее время международные и ...
... запаховых следов человека, организации и ведение отчетности. 4. Порядок взаимодействия экспертно-криминалистических центров с кинологической и другими службами органов внутренних дел. Рассмотрена организация проведения экспертиз и исследований запаховых следов человека в экспертно-криминалистических подразделениях органов внутренних дел РФ. Предложены решения ряда организационных вопросов по ...
... ) запаховых следов с объектов испарением и конденсацией образующих такие следы веществ. На этом этапе была разработана и апробирована методика судебной экспертизы запаховых следов человека с использованием тестирующих запахоносителей и сигналов собак-детекторов в качестве средств исследования. С помощью эталонных проб решена задача контроля и расшифровки сигнального поведения применяемых собак. ...
0 комментариев