1. История развития ГТД
ГТД во второй половине ХХ века стали доминирующими в военной и гражданской авиации. Они обеспечили значительно большие отношения тяги к массе двигателя, лобовые мощности и лобовые тяги по сравнению с предшествовавшими поршневыми двигателями.
Хотя принципиальные схемы ТВД и ТРД были предложены в ряде стран ещё в первой четверти ХХ века, реализация их как эффективных и надёжных двигателей стала возможной лишь в результате синтеза аэродинамического совершенства лопаточных машин и достижении в металлургии.
Речь идет о достаточных КПД компрессоров и турбин и длительной термопрочности конструкционных материалов, которая допускает довольно высокий уровень температуры газа перед турбиной. Условие существования ТРД
(ηсж – ηрасш)min ≥
показывает, что при и ηсж = ηрасш ≤ 0,7, например, температура газа перед турбиной должна быть более Тг = 930 К.
1.1 Россия
Не умаляя роли передовых промышленных стран, таких как Германия и Англия, следует отметить достойный вклад русских учёных и инженеров в создание и развитие газотурбинной техники.
Рис. 2. Конструктивная схема ТРД : а – М.Н. Никольского, б – В.И. Базарова
Основополагающими теоретическими разработками в области реактивного движения и лопаточных машин были ещё дореволюционные труды учёных И.В. Мещерского, Н.Е. Жуковского, К.Э. Циолковского. К началу ХХ века относятся первые проекты ГТД русских инженеров: П. Кузьминского (1900 г.), В. Караводина (1908 г.), Н. Герасимова (1909 г.), А. Горохова (1911 г.), М. Никольского (1914 г.). Изготовление опытного турбовинтового (турборакетного) двигателя мощностью 160 л. с. по проекту М. Никольского (рис. 2 а) было начато в 1914 г. на Русско-Балтийском заводе для замены немецкого поршневого двигателя "Аргус" мощностью 140 л. с. на самолёте "Илья Муромец". Однако в дореволюционной России не появились какие-либо серийные авиационные двигатели собственной разработки (даже поршневые). После 1917 г. развитию авиации со стороны государства уделялось повышенное внимание. После организации ЦАГИ (1 декабря 1918 г.) НТО ВСНХ 4 декабря 1918г. выделил Аэродинамическому институту 212 650 рублей на окончание работ 1918г.
В 1918 г. ВСНХ РСФСР была организована научная автомобильная лаборатория (позднее преобразованная в НАМИ) с отделением авиационных двигателей.
22 мая 1919 г. в ЦАГИ создано винтомоторное отделение во главе с инженером-механиком Б.С. Стечкиным. Уже в 1929 г. Б.С. Стечкин разработал и опубликовал теорию ВРД, получившую всеобщее признание в нашей стране и за рубежом.
В 1923 г. инженер-конструктор В.И. Базаров подал заявку на вполне современную схему одновального ТРД с центробежным компрессором (см. рис. 2, б).
В 1925 г. преподаватели МВТУ Н.Р. Бриллинг и В.В. Уваров обосновали возможность создания мощного авиационного ТВД.
В 1926 г. в НАМИ организована группа, занимавшаяся изучением циклов и схем ГТД, а также процессами горения. Руководство группой осуществляет Н.Р. Бриллинг. В 1929 г. работу этой группы при ВТИ возглавил В.В. Уваров, сосредоточившийся на создании высокопараметрических ТВД и газотурбинных установок (ГТУ). Так называемой "Газовой группе" В.В. Уварова было поручено спроектировать экспериментальные стационарную ГТУ и авиационный ТВД мощностью 1500 л.с.
В 1933 г. ГТУ-1 была спроектирована, а в 1935 г. — собрана и испытана на Коломенском машиностроительном заводе. Общее время испытаний ГТУ-1 при температуре 1120...1370 К составило 21 час.
В 1935 г. разработан первый проект высокопараметрического авиационного ТВД ГТУ-3 (рис. 3) с расчетной мощностью 1500 л.с., испытания которого проходили в 1937—1939-х гг.
ГТУ-3 имел три центробежные ступени компрессора с и двухступенчатую осевую турбину. Турбина охлаждалась дистиллированной водой, так как расчетная температура газа перед ней была 1470 К. Применение пароводяного охлаждения позволяло выдерживать забросы фактической температуры на испытаниях до 1870 К и длительно работать до 1620 К, используя самый жаропрочный материал того времени ЭИ-69 (с рабочей температурой не выше 920…970 К). Суммарная наработка ГТУ-3 составила 57 часов, однако заданная мощность не была достигнута, и горячие испытания ГТУ-3 в 1941 году были прекращены.
3 декабря 1930 г. на базе винтомоторного отдела ЦАГИ и авиамоторного отдела НАМИ был создан ЦИАМ (Центральный институт авиамоторного моторостроения), и в 1940 г. группу В.В. Уварова из ВТИ перевели в ЦИАМ.
Рис. 3. Схема ТВД ГТУ-3 конструкции В.В. Уварова
В 1943 г. в отделе № 8 ЦИАМ спроектирован и в 1945 г. испытан ТВД Э-30-80 (рис. 4) с расчетной температурой газа перед турбиной 1520 К.
В 1947 г. работы по заданной теме переводятся на завод №41, выпускавший поршневые двигатели М-11, а В.В. Уваров назначается главным конструктором завода. Здесь были созданы модификации Э-30-80-2с, Э-30-80А, Э-30-80М, которые прошли 25-часовые испытания, но в 1948 г. работы были прекращены.
В это же время в ЦИАМ были разработаны ТВД Э-30-81А мощностью 3500 л.с. по той же схеме, но с воздушным охлаждением и с использованием более жаропрочного никелевого сплава типа Нимоник (ЭИ-437), которые в количестве пяти штук прошли частичные испытания. В 1949г. все работы по ТВД схемы В.В. Уварова были прекращены в связи с успехами в проектировании ТВД с осевыми компрессорами в других ОКБ. В.В. Уваров перешел в МВТУ и возглавил созданную им кафедру газовых турбин.
Работы над проектированием и созданием ТРД, не имевших винта и способных обеспечить в несколько раз большие, чем ТВД, скорости полета, начал в 1937 г. А.М. Люлька. Сотрудник Харьковского авиационного института Люлька специалист по паротурбинной технике. Он в инициативном порядке разработал проекты ТРД как с центробежным одно- и двухступенчатым компрессором (РТД-1, 1937 г.), так и с осевым компрессором (РД-1,1938 г.) (рис. 5). Рабочие чертежи выбранного ТРД РД-1 с осевым компрессором и с тягой 500 кгс были сданы в производство на Кировский завод в Ленинграде в 1940 г. Двигатель имел шестиступенчатый компрессор с = 3,2 и относительно невысокую температуру газа перед турбиной = 923 К.
Рис. 4. Схема ТВД Э-30-80 конструкции В.В. Уварова
В 1941 г. началась сборка двигателя РД-1, приостановленная с началом Великой Отечественной войны. В 1942 г. узлы РД-1 и документация были вывезены в ЦИАМ. Работы в ЦИАМ по ТРД под руководством А.М. Люльки возобновились только в 1943 году (А.М. Люлька некоторое время работал на танковом заводе в Челябинске и в КБ Болховитинова). Двигатель был модернизирован — его тяга увеличилась до 1200 кгс — и получил обозначение С-18 (стендовый). В марте 1944 г. было получено задание от Наркомата на изготовление пяти экземпляров С-18, а коллектив А.М. Люльки был переведён в НИИ-1, где сосредотачивались все работы по реактивной технике. В сентябре 1944 г. двигатель С-18 собран и испытан. В процессе первых испытаний выявилось большое количество дефектов, наиболее разрушительным из которых был помпаж компрессора. К концу войны в НИИ-1 появились трофейные немецкие двигатели Юмо-004 и BMW-003 с тягой 900 и 800 кгс, однако довод и развитие ТРД С-18 были продолжены, и на его базе был спроектирован ТРД ТР-1 с тягой 1350 кгс. Копирование ТРД Юмо и BMW было поручено другим ОКБ. После успешного испытания двигателя С-18 в конце 1945 г. работы по TP-1 форсировались. К их изготовлению малой серией был подключен завод № 45 (ММПП "Салют") и было организовано новое конструкторское бюро ОКБ-165, которое возглавил А.М. Люлька. В августе 1946 г. ТР-1 поставлен на испытания. В феврале 1947 г. проведены государственные испытания – получена тяга 1290 кгс и ресурс 20 часов. В течение 1948-1950-х гг. создаётся ряд модификаций с последовательно увеличивающейся тягой, вплоть до тяги 5000 кгс на двигателе ТР-3А, названном АЛ-5. Двигатели изготовлялись малой серией и устанавливались на опытных самолётах Ильюшина, Сухого, Лавочкина. 1950-е гг. под руководством А.М. Люльки был создан ряд ТРД типа АЛ-7Ф с = 9.. .10 и К в классе тяг 6500…10000 кгс.
В 1966 г. появились высокопараметрические одновальные ТРД типа АЛ-21Ф с = 12,5... 15 и К в классе тяг 8900... 11400 кгс, установленные на самолетах Су-17М, МиГ-23Б, Су-24М.
В 1985 г. создан один из лучших военных двигателей АЛ-31Ф с тягой 12500 кгс. Он имел очень высокие параметры цикла: = 23, К, а главное – был двухконтурным при наличии ФК (степень двухконтурности m = 0,6).
Так, через 44 года было реализовано собственное изобретение A.M. Люльки ТРДД. На это изобретение Люлька получил авторское свидетельство № 312328/25 от 22 апреля 1941 г.
Следует отметить, что первые отечественные двухконтурные двигатели начали создаваться в 1950-х гг. в других ОКБ. Это двигатели Д-20 конструкции П.А. Соловьёва и НК-6 конструкции Н.Д. Кузнецова, представлявшие собой двухвальные ТРДД со степенью двухконтурности 1,5 и 2,0 и с форсажом в наружном контуре. Двигатели НК-6 и Д-20 не производились серийно, но они послужили базой для создания многих хорошо известных ТРДД и ТРДДФ различного назначения, выпускавшихся большими сериями: Д-20П, Д-30, Д-30КУ/КП, Д-30Ф6, НК-8, НК-86, НК-144-22, НК-32.
Первым отечественным серийным ТРДД был двухвальный Д-20П конструкции П.А. Соловьёва, прошедший 100-часовые испытания в декабре 1959 г. и оснащавший самолёт Ту-124.
Рис. 5. Схемы ТРД РТД-1 и РД-1 конструкции А.М. Люльки
Выдвинутая еще в предвоенные годы техническая идея А.М. Люльки во второй половине XX века была широко реализована во всем мировом авиадвигателестроении ТРДД стали доминирующими как в гражданской, так и в военной авиации.
Бесспорно, что российские ученые и конструкторы, и прежде всего - Б.С. Стечкин, В.В. Уваров, А.М. Люлька, В.Я. Климов, С.К. Туманский, В.А. Добрынин, Н.Д. Кузнецов, П.А. Соловьев, С.П. Изотов, внесли выдающийся вклад в развитие современного мирового газотурбинного авиадвигателестроения.
В послевоенные годы развитие отечественной газотурбинной авиационной техники, опираясь на собственные предшествующие исследования и разработки, а также на изучение трофейных немецких и закупленных английских ТРД, шло широким фронтом и высокими темпами во многих двигателестроительных КБ.
Наряду с развитием ТРД отечественных конструкций в конце 1940-х гг. стали серийно выпускаться ТРД с осевыми и центробежными компрессорами:
- РД-10 (Юмо-004) с тягой 920 кгс - выпускался в Уфе в 1946-1949-х гг. для истребителей Як-15, -17, -19; Лa-150, -152, -156; Су-9;
- РД-20 (BMW-003) с тягой 800 кгс - выпускался в Казани в 1945-1954-х гг. для истребителей МиГ-9, И-300, И-301Т;
- РД-500 (Дервент V) с тягой 1590 кгс - выпускался в Москве на заводе № 500 (ММП им. Чернышева) в 1947-1950-х гг. и в Запорожье в 1956 г. для самолетов Лa-15, Як-23, Су-13, Лa-180, Ту-14;
- РД-45 и РД-45Ф (Нин-1 и Нин-2) стягами 2040 и 2270 кгс - выпускались в Уфе в 1947-1955-х гг. и в Запорожье в 1953-1958-х гг. для самолетов МиГ-15, Су-15, Ла-168, -176, И-20 (КБ Микояна).
В один и тот же день, 27 апреля 1946 г., совершили первые полеты реактивные истребители Як-15 и МиГ-9. В конце 1947 г. первый полет совершил знаменитый истребитель МиГ- 15 с двигателем РД-45Ф.
В 1949 г. под руководством В.Я. Климова на базе двигателей Нин-1 и Нин-2 создан ТРД ВК-1 с тягой 2700 кгс, а в 1951 г. - ТРДФ ВК-1Ф с тягой 3380 кгс. Суммарный выпуск этих двигателей в период с 1949 по 1958 гг. составил 20 000 штук.
В период 1945-1946 гг. на территории Восточной Германии под руководством советского представителя Н.М. Олехновича дорабатывались и развивались модификации двигателей BMW-003 и Юмо-004. Это был ТВД BMW-109-028 (начало проектирования - 1940 г.) с двенадцатиступенчатым осевым компрессором, четырехступенчатой турбиной, с редуктором и двухрядным винтом противоположного вращения мощностью 7940 л.с., а также ТРД BMW-109-018 с трехступенчатой турбиной и тягой 3400 кгс.
С конца 1946 г. на заводе № 2 в Куйбышеве (Самара) с участием переведенных в ноябре 1946 г. немецких специалистов испытывались и дорабатывались два основных двигателя: ТРД BMW-018 с тягой 3400 кгс и ТРД Юмо-012 с тягой 3000 кгс (рис. 9). Первоначально эти двигатели разрабатывались и испытывались в 1946 г. в Германии в г. Штасфурте (главный конструктор К. Престель) и в г. Дессау (главный конструктор А. Шайбе).
Если BMW-018 использовался как экспериментальный и учебный, то Юмо-012 развивался и стал базой для создания ТВД ТВ-022 мощностью 5100 л.с. На двигателе ТВ-022 были сконцентрированы все силы завода № 2, после того как прибывший в мае 1949 г. из Уфы новый главный конструктор Н.Д. Кузнецов сменил на этом посту Н.М. Олехновича.
В 1950 г. прошел 200-часовые испытания ТВД ТВ-022, получивший позднее обозначение ТВ-2. В 1951 г. он был форсирован до 6250 л.с. и назван ТВ-2Ф. С двумя спаренными ТВ-2Ф опытный дальний тяжелый бомбардировщик Ту-95-1 выполнил шестнадцать полетов до катастрофической поломки редуктора 11 мая 1953 г.
В ноябре 1953 г. немецкие специалисты вернулись в ГДР в г. Пирна, где до 1960 г. под руководством д-ра Р. Шейноста создали ряд модификаций: ТРД Пирна-014, -020 и ТВД Пирна-018 (с тягами 3160…3730 кгс и мощностью 3680 л.с.).
В связи с катастрофой ТВД ТВ-2Ф было ускорено создание нового, самого мощного в мире ТВД НК-12. Он имел мощность 12500 л.с., четырнадцатиступенчатый компрессор на = 9,5 и пятиступенчатую турбину с К. НК-12 прошел 100-часовые государственные испытания 25 декабря 1954 г. А 19 июня 1956 г. прошла госиспытания модификация ТВД НК-12М мощностью 15000 л.с. Двигатели НК-12 и НК-12М устанавливались на самолеты Ту-95, Ту-126, Ту-142, Ту-114, Ан-22 ("Антей") и экраноплан.
Такова история создания первых опытных и серийных отечественных авиационных ТРД и ТВД.
В середине 1950-х гг. создаются двигатели второго поколения. Из них наиболее выдающиеся ТРД и ТРДФ - РД-9Б, АЛ-7Ф, Р11-300, РД-3М, ВД-7, ТВД НК-12, АИ-20.
Рис. 6. Схемы ТРД из патентов Ф. Уиттла и Г. фон Охайна
В 1960-е и вначале 1970-х годов в эксплуатации появляются ТРДД - это Д-20П, Д-30, Д-30КУ/КП, НК-8-4, НК-8-2У, НК-144 и высокопараметрические ТРДФ АЛ-21Ф и Р27, -29-300.
Все эти двигатели относятся к двигателям третьего поколения с относительно высокими параметрами цикла = 12…20, К и охлаждаемой турбиной.
С середины 1970-х годов по 1990-е годы в СССР созданы ряд выдающихся двигателей четвертого поколения — первые двигатели с большой степенью двухконтурности Д-36, Д-18, ПС-90А, а также военные ТРДДФ Д-30Ф6, НК-32, РД-33 и AЛ-31Ф, характеризующиеся высокими параметрами цикла = 20…37, К, освоением новых технологий и материалов.
В середине 1980-х гг. начато создание двигателей пятого поколения — ТВВД НК-93 и Д-27 (с капотированным и открытым вентилятором) и ТРДДФ AЛ-41Ф, доводка которого продолжается. Более подробно параметры и конструктивный облик поколений ГТД приведены в табл. 1.
... (рациональная система нефтепроводов). Это, однако, не означает полного возврата к старой модели управления. 4) Сохранение единого экономического пространства - условия выживания топливно-энергетического комплекса. 5) Найти четкую и продуманную программу инвестиций в нефтяную промышленность. 6) Организовать единый Российский банк нефти и газа, государственная внешнеторговая фирма, включающая ...
... политики в электроэнергетике, совместное участие в развитии новых месторождений и межрегиональных энергетических комплексов, обеспечение политики энергоснабжения, повышение надежности и качества теплоснабжения потребителей, а также снижение затрат на ремонт и перекладку теплосетей. В результате анализа экономической эффективности всех предлагаемых вариантов развития ТЭК НСО предпочтительным ...
... возможного экспорта в восточном направлении. К числу приоритетных направлений энергетической стратегии Сибири необходимо отнести следующие: - энергосбережение и рациональное природопользование в энергетике; - структурно-технологическое преобразование ТЭК; - коренное совершенствование баланса КПТ: использование природного газа, газификация углей, переработка и облагораживание углей ...
... , трансформаторы которой выбираются с учетом взаимного резервирования; · Перерыв в электроснабжении возможен лишь на время действия автоматики (АПВ и АВР). Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части. 2.2 Схема электроснабжения НПС Рис. 2.1. Схема электроснабжения НПС На рис. 2.1. в ...
0 комментариев