Войти на сайт

или
Регистрация

Навигация


7. Основные параметры наземных и морских приводных ГТД

В отличие от авиационных двигателей в наземных и морских ГТД полезная энергия полностью срабатывается на турбине и передаётся потребителю в виде механической работы. По способу использования свободной энергии наиболее близким авиационным аналогом для наземных и морских ГТД является вертолетный ГТД.

К основным параметрам наземных и морских ГТД относятся эффективная мощность и эффективный КПД на выходном валу. Также важными параметрами являются расход воздуха, расход и температура газов, располагаемая тепловая мощность на выходе, расход топлива. Эти параметры используются при проектировании ГТУ и объектов применения ГТД.

Масса и габариты для наземных и морских ГТД имеют второстепенное значение. Исключение составляют транспортные ГТД, в том числе и морские, используемые для привода судовых движителей. Для транспортных двигателей габариты (объем) имеют важное значение, поскольку пространство для их размещения на объектах применения зачастую ограничено.

Параметры ГТД обычно даются в стандартных условиях ISO 2314:

- температура атмосферного воздуха +15 °С;

- давление атмосферного воздуха 760 мм рт. ст.;

- относительная влажность воздуха 60%;

- без учета потерь давления во всасывающем и выхлопном устройствах объекта применения ГТД;

- с учетом потерь на входе и выходе собственно ГТД – во входном корпусе компрессора и выходном тракте ГТД за турбиной, включающем стойки задней опоры, диффузор и улитку.

Мощность наземных и морских ГТД изменяется в широких пределах – от десятков киловатт в микротурбинах до сотен мегаватт в крупных стационарных энергетических ГТД. К настоящему времени создано множество моделей ГТД, достаточно равномерно заполняющих мощностной ряд от 30 кВт до 350 МВт.

Мощностной ряд ГТД можно условно разделить на четыре класса:

- микротурбины – имеют мощность от 30 кВт до 250 кВт, применяются обычно в составе автономных энергоагрегатов для выработки электроэнергии или совместного производства электрической, тепловой энергии и в ряде случаев для производства холода;

- ГТД малой мощности – от 250 кВт до 10 МВт, для механического и морского привода, привода электрогенераторов в составе ГТЭС простого цикла и в когенерационных установках для совместного производства электрической и тепловой энергии;

- ГТД средней мощности - от 10МВт до 60 МВт для механического и морского привода, в составе ГТЭС простого и комбинированного парогазового цикла и в когенерационных установках;

- ГТД большой мощности – от 60 до 350 МВт, используются в составе ГТЭС комбинированного парогазового цикла и в когенерационных установках; значительно реже – в простом цикле.

Важнейшими удельными параметрами, определяющими степень технического совершенства наземных и морских ГТД, являются удельная мощность и эффективный КПД на выходном валу.

Удельная мощность (аналогично ТВД и вертолетным ГТД) представляет собой мощность, приходящуюся на единицу (1 кг/с) расхода воздуха Gв , и численно равна удельной работе цикла (кДж/кг), кВт/кг/с.

Nуд = Nе / Gв.

Современные наземные и морские ГТД постоянно развиваются в сторону повышения удельной мощности за счет увеличения температуры газа перед турбиной, совершенствования аэродинамики лопаточных машин и систем охлаждения. В настоящее время особенно значителен прогресс в повышении параметров мощных одновальных энергетических ГТД. Это объясняется интенсивным заимствованием авиационных технологий в области трехмерной аэродинамики, применением многослойных теплозащитных покрытий (ТЗП) и эффективных систем охлаждения турбины, использованием теплообменников для снижения температуры охлаждающего воздуха и водяного пара в качестве охладителя.

Удельная мощность новейших серийных энергетических ГТД достигает 400...450 кВт/кг/с при освоенной температуре газа перед турбиной Т*СА = 1700 К (при работе в базовом режиме с межремонтным ресурсом 25 000 часов). Разрабатываются опытные модели энергетических ГТД с температурой газа перед турбиной Т*СА = 1783 К.

Удельная мощность ГТД малой и средней мощности достигает значений 300…350 кВт/кг/с при максимальной температуре газа на номинальном режиме Т*СА = 1500…1600 К.

Важнейшим удельным параметром наземных и морских ГТД является эффективный КПД ηе . Он характеризует топливную эффективность и представляет собой отношение эффективной мощности на валу Ne к мощности, подведённой с топливом Nтопл , кВт:

Nтопл = GтчасНu/3600, ηе = Ne / Nтопл= ,

где Gт час – часовой расход топлива ГТД, кг/ч; Нu – низшая теплота сгорания, кДж/кг.

Повышение эффективного КПД – важнейшее направление развития ГТД – достигается повышением параметров цикла Т*СА и π*к в оптимальном соотношении, а также уменьшением внутрицикловых потерь за счет совершенствования аэродинамики лопаточных машин, систем охлаждения и снижения потерь по тракту ГТД.

Эффективный КПД зависит также и от класса мощности – у ГТД меньшего класса мощности КПД, как правило, ниже (рис. 23). Эта зависимость проявляется через фактор размерности. В ГТД меньшей мощности более умеренные параметры цикла, так как сложнее получить высокий КПД на малоразмерных лопаточных машинах. Параметры цикла, кроме этого, влияют и на удельную стоимость ГТД. Эффективный КПД современных ГТД простого цикла составляет ηе = 0,18…0,43.

Удельная стоимость ГТД - экономический параметр, характеризующий стоимость 1 кВт установленной мощности ГТД в определенной стандартной комплектации. Например, если ГТД применяется для механического привода, в состав оборудования входят: система запуска, управления, противообледенительная и противопожарная, входное и выходное устройства, редуктор и некоторые другие. С ростом мощности ГТД существенно снижается его удельная стоимость. Так, например, удельная стоимость ГТД для механического привода составляет от 400…450 $/кВт (для ГТД класса мощности 1 МВт) до 170…180 $/кВт (для ГТД мощностью 30…40 МВт).



Информация о работе «Научно-технический прогресс газотурбинных установок магистральных газопроводов»
Раздел: Физика
Количество знаков с пробелами: 89801
Количество таблиц: 0
Количество изображений: 27

Похожие работы

Скачать
249350
33
10

... (рациональная система нефтепроводов). Это, однако, не означает полного возврата к старой модели управления. 4) Сохранение единого экономического пространства - условия выживания топливно-энергетического комплекса. 5) Найти четкую и продуманную программу инвестиций в нефтяную промышленность. 6) Организовать единый Российский банк нефти и газа, государственная внешнеторговая фирма, включающая ...

Скачать
117873
24
7

... политики в электроэнергетике, совместное участие в развитии новых месторождений и межрегиональных энергетических комплексов, обеспечение политики энергоснабжения, повышение надежности и качества теплоснабжения потребителей, а также снижение затрат на ремонт и перекладку теплосетей. В результате анализа экономической эффективности всех предлагаемых вариантов развития ТЭК НСО предпочтительным ...

Скачать
119035
25
0

... возможного экспорта в восточном направлении. К числу приоритетных направлений энергетической стратегии Сибири необходимо отнести следующие: -     энергосбережение и рациональное природопользование в энергетике; -     структурно-технологическое преобразование ТЭК; -     коренное совершенствование баланса КПТ: использование природного газа, газификация углей, переработка и облагораживание углей ...

Скачать
91991
14
5

... , трансформаторы которой выбираются с учетом взаимного резервирования; ·  Перерыв в электроснабжении возможен лишь на время действия автоматики (АПВ и АВР).  Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части. 2.2 Схема электроснабжения НПС Рис. 2.1. Схема электроснабжения НПС  На рис. 2.1. в ...

0 комментариев


Наверх