2.1 Механический привод промышленного оборудования

Наиболее массовое применение ГТД механического привода находят в газовой промышленности. Они используются для привода нагнетателей природного газа в составе ГПА на компрессорных станциях магистральных газопроводов, а также для привода агрегатов закачки природного газа в подземные хранилища (рис. 15).

Рис. 15. Применение ГТД для прямого привода нагнетателя природного газа: 1 - ГТД; 2 - трансмиссия; 3 - нагнетатель.

К примеру, только в ОАО "Газпром" к настоящему времени эксплуатируются около 3100 ГТД суммарной установленной мощностью свыше 36000 МВт. ГТД используются также для привода насосов, технологических компрессоров, воздуходувок на предприятиях нефтяной, нефтеперерабатыватывающей, химической и металлургической промышленности. Мощностной диапазон ГТД от 0,5 до 50 МВт.

Основная потребность перечисленного приводимого оборудования – зависимость потребляемой мощности от частоты вращения (обычно близкая к кубической), температуры и давления нагнетаемых сред. Поэтому ГТД механического привода должны быть приспособлены к работе с переменными частотами вращения и мощностью. Этому требованию в наибольшей степени отвечает схема ГТД со свободной силовой турбиной. Различные схемы морских и наземных ГТД будут рассмотрены ниже.

2.2 Привод электрогенераторов

ГТД для привода электрогенераторов (рис. 16) используются в составе газотурбинных электростанций (ГТЭС) простого цикла и конденсационных электростанций комбинированного парогазового цикла (ПГУ), вырабатывающих "чистую" электроэнергию, а также в составе когенерационных установок (в российской литературе они часто называются "ГТУ-ТЭЦ"), производящих совместно электрическую и тепловую энергию.

Современные ГТЭС простого цикла, имеющие относительно умеренный электрический КПД ηэл= 25…40%, в основном используются в пиковом режиме эксплуатации – для покрытия суточных и сезонных колебаний спроса на электроэнергию. Эксплуатация ГТД в составе пиковых ГТЭС характеризуется высокой цикличностью (большим количеством циклов "пуск – нагружение – работа под нагрузкой – останов"). Возможность ускоренного пуска является важным преимуществом ГТД при работе в пиковом режиме. Электростанции с ПГУ используются в базовом режиме (постоянная работа с нагрузкой, близкой к номинальной, с минимальным количеством циклов "пуск – останов" для проведения регламентных и ремонтных работ). Современные ПГУ, базирующиеся на ГТД большой мощности (N > 150 МВт), достигают КПД выработки электроэнергии ηэл= 58…60%. В когенерационных установках тепло выхлопных газов ГТД используется в котле-утилизаторе для производства горячей воды и (или) пара для технологических нужд или в системах централизованного отопления. Совместное производство электрической и тепловой энергии значительно снижает её себестоимость. Коэффициент использования тепла топлива в когенерационных установках достигает 90%. Электростанции с ПГУ и когенерационные установки являются наиболее эффективными и динамично развивающимися современными энергетическими системами. В настоящее время мировое производство энергетических ГТД составляет около 12000 штук в год суммарной мощностью около 76000 МВт.

Основная особенность ГТД для привода электрогенераторов – постоянство частоты вращения выходного вала на всех режимах (от холостого хода до максимального), а также и высокие требования к точности поддержания частоты вращения, от которого зависит качество вырабатываемого тока. Этим требованиям в наибольшей степени соответствуют одновальные ГТД, поэтому они широко используются в энергетике.

Рис. 16. Применение ГТД для привода генератора (через редуктор): 1- ГТД, 2 – трансмиссия, 3 – редуктор, 4 – генератор.

ГТД большой мощности (N > 60 МВт), работающие, как правило, в базовом режиме в составе мощных электростанций, выполняются исключительно по одновальной схеме.

В энергетике используется весь мощностной ряд ГТД от нескольких десятков кВт до 350 МВт.

2.3 Применение в морских условиях

В морских условиях ГТД применяются в составе силовых агрегатов гражданских морских судов и боевых кораблей различного класса: от быстроходных ракетных и патрульных катеров водоизмещением около 500 т до авианосцев и кораблей сопровождения водоизмещением до 50000 т. Газотурбинный силовой агрегат обычно включает один или несколько ГТД и редуктор для понижения частоты вращения и передачи мощности на гребной винт. При этом ГТД могут быть различной мощности. В этом случае двигатель меньшей мощности используется как маршевый для экономичного крейсерского хода, а большей мощности – как форсажный для обеспечения максимального боевого хода при совместной работе с маршевым двигателем. Применяются также силовые агрегаты смешанного типа с использованием дизеля в качестве маршевого двигателя.

К ГТД морского применения могут быть отнесены также двигатели, предназначенные для привода промышленного и энергетического оборудования, но работающие в морских условиях – на морских платформах добычи нефти и газа или в прибрежной полосе. Такие ГТД должны удовлетворять ряду специфических требований, поскольку работают они в агрессивной морской среде. Класс мощности морских ГТД – от 0,5 до 50 МВт.

Кроме перечисленных выше основных объектов ГТД применяются также как двигатели наземных транспортных средств (локомотивов, автомобилей) и боевой техники (танков, бронемашин). Прорабатывается применение ГТД для городских трамваев.

Дополнительным эффектом использования ГТД может быть выработка сжатого воздуха, инертных газов, охлаждённого воздуха (в системах кондиционирования и промышленных холодильниках).



Информация о работе «Научно-технический прогресс газотурбинных установок магистральных газопроводов»
Раздел: Физика
Количество знаков с пробелами: 89801
Количество таблиц: 0
Количество изображений: 27

Похожие работы

Скачать
249350
33
10

... (рациональная система нефтепроводов). Это, однако, не означает полного возврата к старой модели управления. 4) Сохранение единого экономического пространства - условия выживания топливно-энергетического комплекса. 5) Найти четкую и продуманную программу инвестиций в нефтяную промышленность. 6) Организовать единый Российский банк нефти и газа, государственная внешнеторговая фирма, включающая ...

Скачать
117873
24
7

... политики в электроэнергетике, совместное участие в развитии новых месторождений и межрегиональных энергетических комплексов, обеспечение политики энергоснабжения, повышение надежности и качества теплоснабжения потребителей, а также снижение затрат на ремонт и перекладку теплосетей. В результате анализа экономической эффективности всех предлагаемых вариантов развития ТЭК НСО предпочтительным ...

Скачать
119035
25
0

... возможного экспорта в восточном направлении. К числу приоритетных направлений энергетической стратегии Сибири необходимо отнести следующие: -     энергосбережение и рациональное природопользование в энергетике; -     структурно-технологическое преобразование ТЭК; -     коренное совершенствование баланса КПТ: использование природного газа, газификация углей, переработка и облагораживание углей ...

Скачать
91991
14
5

... , трансформаторы которой выбираются с учетом взаимного резервирования; ·  Перерыв в электроснабжении возможен лишь на время действия автоматики (АПВ и АВР).  Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части. 2.2 Схема электроснабжения НПС Рис. 2.1. Схема электроснабжения НПС  На рис. 2.1. в ...

0 комментариев


Наверх