4.2 Обратимые полиморфные превращения
Определение наличия быстро протекающих обратимых полиморфных превращений в полуторных оксидах редкоземельных элементов осуществлялось с помощью высокотемпературного рентгеновского анализа и точных термографических измерений на специально переоборудованном адиабатическом калориметре [20].
Прецизионный дифференциальный термоанализ проводился при нагреве навесок исследуемых оксидов в высоком вакууме (1 • 10 -5 мм рт. ст) со скоростью порядка 10 в 1 минуту. Количество исследуемого вещества при термоанализе составляло 0.5—1.0 г. Чувствительность обнаружения тепловых аномалий для быстропротекающих превращений составляла 0.02—0.05 кал./г. Термоанализ осуществлялся преимущественно в температурном интервале 50—1100°. При термоаналитических исследованиях оксидов редкоземельных элементов в качестве «эталонного» вещества использовался также один из оксидов редкоземельной группы, теплоемкость которого мало отличалась от теплоемкости исследуемого вещества и широком интервале температур.
Данные, полученные на калориметре при нагревании в вакууме сопоставлялась с результатами высокотемпературных рентгеновских исследований тех же оксидов, нагревание которых во время съемки рентгенограмм до температуры 15000 происходило на воздухе.
Термоаналитическими, а также рентгенографическими исследования было установлено, что для оксидов Y2O3, La2O3, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Ho2O3, Er2O3, Dy2O3, Tm2O3 и Yb2O3 в области температур 50-15000 не существует быстрых обратимых полиморфных превращений.
В 1966 г. появилась серия работ, выполненных под руководством Фоекса [42]. В этих работах приводятся данные термографического и рентгенографического исследования большинства оксидов РЗЭ при различных температурах, вплоть до температур плавления этих оксидов. Удовлетворительное совпадение результатов, полученных при термоанализе на воздухе и при рентгенографических исследованиях, проводившихся в восстановительной (Н2+Не) или нейтральной (Не) среде с использованием подложек из вольфрама, рения или иридия, исключает заметные изменения стехиометрии полуторных оксидов, даже при столь высоких температурах.
В результате исследования были обнаружены две новые модификации: гексагональной (Н-форма) и неизвестной (Х-форма) структур. Для оксидов самария и европия были обнаружены следующие обратимые превращения:
В↔А | А↔Н | Н↔Х | |
Sm2O3 Eu2O3 | 19000 2040 | 21000 2140 | 22500 2270 |
4.3 Влияние давления на полиморфизм оксидов
Хокстра и Гингерих [23] изучали влияние давления на полиморфизм оксидов редкоземельных элементов. С-формы оксидов прогревали несколько часов при 1000° на воздухе, оксид тербия восстанавливали в токе водорода. Образцы оксидов, помещенные в платиновые ампулы, прессовали под давлением 0.4 кбар. Несколько таблеток, разделенных между собой прокладками из пирофилита, помещали в пирофилитовую трубку, обогреваемую снаружи графитовым нагревателем. После обработки при высоком давлении и высокой температуре образцы охлаждали за несколько секунд до 50°, затем за 5—10 минут спускали давление. Вещество извлекали из автоклава и исследовали при атмосферном давлении и комнатной температуре.
Условия, при которых проводились опыты, приведены в табл. 6. Во всех случаях наблюдался переход С-формы в В-форму. Было обнаружено, что для оксидов Eu, Gd, Tb, Dy и Sm В-модифинация может быть получена и при атмосферном давлении, но при высоком давлении переход происходит при более низкой температуре; для всех остальных оксидов тяжелых РЗЭ для получения В-модификации нужно применять высокие давления.
Таблица 6. Условия получения В-формы полуторных оксидов редкоземельных элементов из С-формы [23]
Оксид | Давление, кбар | Температура, 0С | Оксид | Давление, кбар | Температура, 0С |
Y2O3 Sm2O3 Eu2O3 Gd2O3 Tb2O3 Dy2O3 | 25 30 25 30 25 30 | 1000 1020 905 1020 905 1020 | Ho2O3 Er2O3 Tm2O3 Yb2O3 Lu2O3 | 25 30 40 40 40 | 1000 1020 1005 1000 1005 |
При отжиге на воздухе при 1000С и атмосферном давлении в течение нескольких часов В-формы оксидов (всех, кроме Sm, Er и Gd) превращались обратно в С-формы. Это показывает, что В-модификации, полученные при высоком давлении, являются метастабильными при атмосферном давлении.
Кроме оксидов самария, европия и гадолиния, В-формы которых являются единственными устойчивыми для них фазами, исключение составляют также и оксиды тербия и диспрозия, претерпевающие при обычном давлении обратимый полиморфный переход В↔С при высоких температурах. Проведение обжигов при высоком давлении приводит для этих оксидов только к понижению температуры фазового превращения, не изменяя его природы.
Рассматривая влияние давления на полиморфизм оксидов, следует указать также, что при проведении обжига образцов при высоком давлении водорода или водяных паров (гидротермальный синтез) наблюдается снижение температур перехода из кубической формы в гексагональную или моноклинную.
Таким образом, работами ряда авторов было показано, что применение высоких давлений способствует переходу метастабильных С-форм оксидов в А- (неодим, празеодим) или В-формы (самарий, европий, гадолиний).
... MnY2S4 и фазы MgLn4S7 моноклинной сингонии. Условие существования фаз, характер плавления не известны. Ограниченность и неполнота литературных данных определяет актуальность задачи изучения фазовых равновесий в системе MgS – Y2S3. Глава 2. Методическая часть. 2.1. Методы физико-химического анализа Исходя из свойств полуторных сульфидов, таких, как термическая стабильность, летучесть, и ...
... (tпл. GdCl3 = 610˚C), остывший трихлорид хранили в герметически закрытых ампулах. Все операции с солью проводились в сухом боксе. Глава Ш. Исследование совместного электровосстановления гадолиния и алюминия в галогенидных расплавах. Из анализа литературных данных следует, что процесс электровосстановления алюминия из хлоридных и фторидных расплавов изучался в основном на платиновом ...
... отходам производства. В докладе «О состоянии окружающей природной среды Российской Федерации в 1997 году» Государственного комитета Российской Федерации по охране окружающей среды отмечается, что на начало 1997 г. на предприятиях различных отраслей промышленности накоплено 1431,7 млн. т токсичных отходов. За 1997 г. на промышленных предприятиях РФ образовалось 89,4 млн т токсичных отходов, из ...
... отходы образуются в процессе переработки нефти в виде кислых гудронов, нефтяных шламов, отработанных масел и др. ГЛАВА 3. ИЗВЛЕЧЕНИЕ КРЕМНЕФТОРИСТОВОДОРОДНОЙ КИСЛОТЫ ИЗ ПРОЦЕССА ПРОИЗВОДСТВА ФОСФОРНОЙ КИСЛОТЫ В процессе производства концентрированных фосфатных удобрений фосфорсодержащая руда подвергается экстракции раствором серной кислоты. Полученная разбавленная фосфорная кислота ...
0 комментариев