1.2 Методика преподавания математики как наука. Основные вопросы изучения

Слово «методика» в переводе с древнегреческого означает «способ познания», «путь исследования». Метод - это способ достижения какой-либо цели, решения конкретной учебной задачи.

Существуют разные точки зрения на содержание понятия «методика». Одни, признавая методику наукой педагогической, рассматривали ее как частную дидактику с общими для всех предметов принципами обучения. Другие считали методику специальной педагогической наукой, решающей все задачи обучения и развития личности через содержание предмета. Приведем несколько примеров определений.

Методика преподавания математики - наука о математике как учебном предмете и закономерностях процесса обучения математике учащихся различных возрастных групп и способностей.

Методика обучения математике – это педагогическая наука о задачах, содержании и методах обучения математике. Она изучает и исследует процесс обучения математике в целях повышения его эффективности и качества. Методика обучения математике рассматривает вопрос о том, как надо преподавать математику.

Методика преподавания математики - раздел педагогики, исследующий закономерности обучения математике на определенном уровне ее развития в соответствии с целями обучения подрастающего поколения, поставленными обществом. Методика обучения математике призвана исследовать проблемы математического образования, обучения математике и математического воспитания. Методика преподавания математики – педагогическая наука и, соответственно, учебная дисциплина, исследующая закономерности обучения математики вообще, закономерности обучения математике в школе в частности (5), наука о математике как учебном предмете и закономерностях процесса обучения математике учащихся различных возрастных групп на определенном уровне её развития в соответствии с целями обучения, поставленными обществом[14] .

Методика преподавания математики занимается, прежде всего, изучением, разработкой, усовершенствованием различных методов и форм преподавания математики в школах, а также многообразными организационными вопросами, возникающими при применении этих методов и форм на практике. Эта дисциплина выясняет, как обеспечить прочные систематизированные знания и навыки в объеме, установленном программой, тратя на это минимум времени и сил, и как обеспечить достижение тех воспитательных целей, какие ставит себе изучение математики. Методика преподавания математики изучает и систематизирует опыт лучших учителей и даёт возможность начинающему учителю избежать многих ошибок, легко допускаемых на первых порах и приводящих к большим потерям для учащихся. Исходя из конкретных задач, стоящих перед учителем математики, имеющим класс с определенным составом учащихся, определенную программу, определенные учебники, твердое расписание, методика устанавливает способы наилучшего использования всех этих конкретных условий для достижения поставленной цели. Кроме того, она накопляет также опыт учителей, говорящий о желательности тех или иных изменений в учебных планах, программах, учебниках.

Методика математики – наука, выводы которой немедленно и самым широким образом применяются на практике и являются базой искусства преподавания [13].

Методика преподавания математики прежде всего должна ответить на несколько основных, тесно связанных между собой вопросов.

Первый из них – зачем обучать математике? Очевидно, ответ на этот вопрос можно получить, исходя из общих задач воспитания, которые, в свою очередь, определяются задачами, стоящими перед обществом на соответствующем этапе его развития.

Второй вопрос – кого обучать математике? С одной стороны, это вопрос о возрасте: когда целесообразно приступать к обучению детей математике и когда следует заканчивать изучение обязательной для всех программы? С другой стороны это приобретающий все большую актуальность вопрос о «послешкольном» продолжении математического образования.

Третий вопрос – каково содержание изучаемого курса математики? Ответ на этот вопрос теснейшим образом связан с ответом на вопрос о целях обучения математике. Следует подчеркнуть, что, пожалуй, именно в математике вопрос о том, что именно и в каком объеме следует отобрать из сегодняшней науки для школьной программы, является наиболее сложным, важным и спорным.

Наконец, четвертый вопрос – как обучать математике? Очевидно, что ответ на этот вопрос и составляет важнейшую часть курса методики преподавания математики, причем материал этот является наиболее подвижным, наиболее конкретным, наиболее близким учителю-практику, требует к себе поистине творческого отношения.

Дидактика математики относится к группе педагогических наук и находится в тесной связи с педагогикой. Влияние на нее оказывают и математические науки. Также методика математики основывается на понятиях и законах психологии. Физиология высшей нервной деятельности, в частности учение И.П. Павлова об условных рефлексах, находит применение в обучении математике. Плодотворное влияние на дидактику математики оказывает связь логикой, историей математики, с ее историей.

Методика преподавания математики рассматривает такие вопросы, как цели обучения, математические понятия и предложения, теоремы и их доказательство, задачи и их решение, методы и формы обучения, урок по математике и др[6].

Методика преподавания математики в школе возникла с целью поиска педагогически целесообразных путей и способов изложения учебного материала. Методика преподавания математики начала разрабатываться чешским учёным Я.А. Коменским. Методика обучения математике впервые выделилась как самостоятельная дисциплина в книге швейцарского учёного И.Г. Песталоцци «Наглядное учение о числе» (1803, русский перевод 1806). Первым пособием по методике математики в России стала книга Ф.И. Буссе «Руководство к преподаванию арифметики для учителей» (1831). Создателем русской методики арифметики для народной школы считается П.С. Гурьев, который критерием правильности решения методических проблем признавал опыт и практику.

Цель методики обучения математике заключается в исследовании основных компонентов системы обучения математике в школе и связей между ними. Под основными компонентами понимаются: цели, содержание, методы, формы и средства обучения математике.

Предмет методики обучения математике отличается исключительной сложностью. Предметом методики обучения математике является обучение математике, состоящее из целей и содержания математического образования, методов, средств, форм обучения математике. На функционирование системы обучения математике оказывает влияние ряд факторов: общие цели образования, гуманизация и гуманитаризация образования, развитие математики как науки, прикладная и практическая направленность математики, новые образовательные идеи и технологии, результаты исследований в психологии, дидактике, логике и т.д. Совокупность этих факторов образует внешнюю среду, которая оказывает непосредственное влияние на систему обучения математике. Многие компоненты внешней среды воздействуют на нее через цели обучения математике.

Методика преподавания математики претерпевает в своем развитии большие трудности, прежде всего, из-за сложностей преодоления разрыва между школьной математикой и математической наукой, а также из-за того, что она является пограничным разделом педагогики на стыке философии, математики, логики, психологии, биологии, кибернетики и, кроме того, искусства[13].


Глава 2. Стадии становления методики преподавания математики в России

2.1 Основные периоды и этапы становления методики преподавания математики в России

Ряд исследователей, таких как Ю.М. Колягин, Т.С. Полякова, О.А. Саввина, О.В. Тарасова, Р.С. Черкасов, в своих работах предлагают разные подходы к периодизации развития математического образования. В научных работах И.К. Андронова и Р.С. Черкасова предприняты попытки определить не только периодизацию математического образования, но и периодизацию методики преподавания математики как науки.

Так, например, Ю.М. Колягин в своем исследовании описывает развитие математического образования на фоне эволюции всей отечественной образовательной системы, в большинстве случаев обращаясь к оценке событий с государственных позиций. Это подтверждается тем, что в приложении к книге содержатся биографические сведения о деятелях науки, просвещения и культуры России в двенадцати сводных таблицах, разбитых хронологическими рамками [2]:

1.  1682 -1725 гг. (Петр I);

2.  1725 - 1740 гг. (Екатерина I, Петр II, Анна Иоановна);

3.  1741-1762 гг. (Елизавета Петровна, Петр III);

4.  1762 - 1801 гг. (Екатерина II, Павел I);

5.  1801 – 1825 гг. (Александр I);

6.  1825 -1855 гг. (Николай I);

7.  1855 – 1881 гг (Александр II);

8.  1881 – 1894 гг. (Александр III);

9.  1894 – 1918 гг. (Николай II);

10.1918 – 1930 гг. (Советский период);

11.1931 – 1965 гг. (Советский период);

12.1965 – 1999 гг. (Советский период).

В монографии Т.С. Поляковой приводится периодизация школьного математического образования, начиная со времени Киевской Руси (X-XI вв.) и до наших дней. Она отмечает следующие этапы развития математического образования [3]:

1.  Зарождение математического образования (со времени Киевской Руси (X – XI вв.) – XVII в.);

2.   Становление отечественного математического образования (с указа Петра I об основании математико – навигацкой школы (1701 г.) до 1804 г.);

3.  Создание российской модели классической системы школьного математического образования (образовательные реформы 1804 г. – вторая половина XIX в.);

4.  Реформация классической системы школьного математического образования (60 – 70-е гг. XIX в. – 1917 г.);

5.  Поиск новых моделей математического образования (1918 -1931 гг.);

6.  Реставрация отечественных традиций, создание советской модели классического школьного математического образования (1931 – 1964 гг.);

7.  Реформация советской модели классической системы школьного математического образования (1964 – 1982 гг.);

8.  Период контрреформации (1982 – 1990 гг.);

9.  Современный этап развития школьного математического образования (начался с 1991 – 1992 гг. и до настоящего времени).

В исследовании О.А. Саввиной определено восемь периодов становления и развития обучения высшей математике в отечественной средней школе [4]:

1.  Первый период (вторая треть XVIII в. – 1845 гг.) – характеризуется тем, что вопросы высшей математики включались в преподавание стихийно. Обучение высшей математике в школе не носило массового характера. На данном этапе были созданы первые учебники по высшей математике на русском языке, в них формировалась лексика и терминологический аппарат понятий аналитической геометрии и анализа бесконечно малых.

2.  Второй период (1846 – 1906 гг.) – ознаменовался стабилизацией математического образования и появлением общегосударственных программ, но вместе с тем – отсутствием в программах гимназий элементов высшей математики. В этот же период ослабляются позиции аналитической геометрии в курсе кадетского корпуса (военной гимназии) и реальных училищ.

3.  Третий период (1907 – 1917 гг.) – период «парадного марша» элементов высшей математики в среднюю школу. В 1907 г. элементы высшей математики вошли в программу реального училища, в 1911 г. основами анализа бесконечно малых пополнился курс кадетского корпуса, а с 1914 г. сведения из аналитической геометрии заняли почетное место в программе коммерческого училища. Эти изменения не коснулись лишь классической гимназии, все попытки реформирования содержания математического образования в ней, остались только в проектах. Следует отметить, что в это время был заложен прочный фундамент методики преподавания высшей математики в средней школе (труды А.Н. Остроградского, М.Г. Попупреженко, П.А., П.А. Самохвалова, Ф.В. Филипповича, Д.М. Синцова и др.).

4.  Четвертый период (1918 – 1933 гг.) – характеризуется тем, что «по инерции» вопросы высшей математики, заложенные в дореволюционном курсе отдельных типов средних учебных заведений, включались в проекты программ для средней школы, но не нашли воплощения на практике.

5.  Пятый период (1934 – 1964 гг.) – создание и функционирование советской модели классического школьного математического образования, игнорирующей элементы высшей математики на старшей ступени обучения.

6.   Шестой период (1965 – 1976 гг.) - широкая апробация элементов математического анализа в школьном курсе (в т. ч. на факультативах и математических кружках), постепенное введение элементов дифференциального и интегрального исчисления в массовую среднюю школу, поиск наиболее рациональной конструкции модели (объема, содержания и порядка изложения).

7.  Седьмой период (1977 – конец 80-х гг.) – стабилизация содержания сведений из высшей математики в школьном курсе, период массового включения начал дифференциального и интегрального исчисления в среднюю школу, введение стабильного учебника «Алгебра и начала анализа» (под ред. А.Н. Колмогорова). Несмотря на контрреформацию содержания математического образования начала 80-х гг., элементы математического анализа в школьном курсе были сохранены. В это время создана современная методика обучения математическому анализу в средней школе (Ю.М. Колягин, Г.Л. Луканкин, Н.А. Терешин и др.).

8.  Восьмой период (начало 90-х гг. по настоящее время) – время поиска оптимального объема и конструкции начал математического анализа в средней школе в условиях фуркации старшей ступени школы на курсы А и В. В целом характеризуется ослаблением составляющей начал математического анализа.

В данном исследовании, предлагая именно такую модель распределения фактов истории математического образования по этапам, автор помимо закономерностей функционирования математического образования в разных социально-педагогических условиях, учитывал, в первую очередь, значение, которое придавалось высшей математике в этом процессе: изменение роли и места (ослабление или усиление) высшей математики в школьном обучении.

Таким образом, рассматриваемая периодизация, служит моделью для схематического описания генезиса обучения высшей математике в отечественной школе XVIII-XXI вв.

О.В. Тарасова выделяет два периода становления и развития геометрического образования: европейский период и русский период. Первый период (I – V этапы) относится к становлению и развитию обучения геометрии в европейской школе (VI – IV вв. до н.э. – конец XVII века). Второй период (VI – X этапы) соотносится со становлением и развитием обучения геометрии в отечественной средней школе (конец XVII века – революция 1917 года) [5].

Рассмотрим эти два периода по этапам.

Первый этап (VI – IV вв. до н.э.) – период преобразования практической геометрии в науку теоретическую и начало обучения геометрии. Геометрия из элитной науки, доступной немногим, довольно широко распространилась, постепенно стала предметом открытого обучения. Этому способствовали различные научные школы (Фалес Милетский, Пифагор, Гиппократ Хиосский и др.)

Второй этап (начало III в. до н.э. – до Рождества Христова) – период возникновения научного систематического курса геометрии, благодаря написанию Евклидом «Начал» - труда, по замыслу автора, предназначенного для закрытого обучения. Тем самым была создана прочная база для дальнейших теоретических исследований (Евклид, Архимед, Аполлоний Пергский и др.).

Третий этап (I в. – до конца XV в.) – период начала схоластического обучения геометрии (в монастырях, городских училищах, университетах и т. п.).

Четвертый этап (начало XVI в. – до конца XVI в.) – период начала критики евклидовского курса в качестве школьного учебника. Создание первых курсов, ориентированных на практические начала геометрии (геодезию, черчение, предметы окружающего мира) (П. Рамус).

Пятый этап (начало XVII в. – до конца XVII в.) – период определения принципов первичного обучения геометрии (наглядности, доступности) (Я.А. Коменский, В. Ратихий); формирования наглядно-прикладного направления в обучении геометрии (А. Арно). Период возникновения ярких противоречий между чувственным и абстрактным в процессе усвоения геометрических знаний. Этими годами датируются первые отечественные работы по геометрии, в связи с изложением вопросов землемерия.

Далее рассмотрим второй период (русский), который начинается с шестого этапа.

Шестой этап (начало XVIII в. – до середины XVIII в.) – период появления в России геометрии, как учебной дисциплины, с преобладанием ее практической составляющей; появления первых российских учебников (Г.В. Крафт, Л.Ф. Магницкий и др.); закладка фундамента отечественной методической науки под влиянием иностранных ученых и педагогов (В. Христиан, Л. Эйлер и др.).

Седьмой этап (вторая половина XVIII в.) – период начала массового обучения геометрии в России как самостоятельной учебной дисциплине. В это время постепенно определяется и содержание курса геометрии в различных учебных заведениях (кадетских и морских корпусах, академических гимназиях, общеобразовательных школах и т.п.). Начинается активное создание адаптированных для учащихся отечественных учебников геометрии (Д.С. Аничков, М.Е. Головин, Н.Г. Курганов, С. Назаров, С.Я. румовский и др.).

Восьмой этап (первая половина XIX века) – период зарождения наглядной геометрии как составной части школьного курса геометрии; создание отечественных и переводных «учебников для всех», предназначенных для сообщения начальных геометрических знаний на наглядной основе (Г. Литров, Г. Марешаль, Т.П. Татаринов и др.). В это время создаются первые отечественные систематические школьные курсы геометрии (С.Е. Гурьев, Т.Ф. Осиповский, Н.И. Фусс и др.); возникают различные методики геометрии применительно к определенному курсу (С.Е. Гурьев).

Девятый этап (вторая половина XIX века) – характеризуется становлением начального и систематического курсов геометрии. В это время появляется значительное число учебников, реализующих разнообразные подходы (написанных уже более педагогически осмысленно). Появляются учебники-долгожители (А.Ю. Давидов, А.П. Киселев). Методика геометрии, изначально применительно к определенному курсу (В.Я. Буняковский, Н.И. Лобачевский, М.В. Остроградский и др.) становится методикой геометрии как раздела педагогической науки (А.Н. Остроградский). Окончательно определяется структура и содержание систематического курса, интегрирующего в себе как практические, так и теоретические основы геометрии.

Десятый этап (начало XX в. – до революции 1917 г.) – завершение оформления курса элементарной геометрии как самостоятельного учебного предмета, изучаемого на различных этапах школьного обучения. Создаются комплекты учебников геометрии по начальному и систематическому курсам геометрии, обеспечивающие их преемственность (Г.Я. Юревич, В.Я. Гебель и др.); создаются отдельные учебно-методические комплекты по начальному курсу геометрии (А.Р. Кулишер); формируются целостные методические теории обучения геометрии (Н.А. Извольский, С.И. Шохор-Троцкий и др.).

Таким образом, по мнению автора (Тарасовой О.В.), «к концу рассматриваемого временного периода в отечественной средней школе сложился и оправдал себя на практике классический курс школьной геометрии, составными частями которого были курс начальной геометрии (младшее звено школы), систематический курс планиметрии (среднее звено школы) и систематический курс стереометрии (старшее звено школы). В этом курсе в органическом единстве выступали элементы теории и практики (помимо учебников существовали и задачники). К этому же времени были разработаны основы отечественной методики обучения геометрии» [5].

Что касается определения периодизации методики преподавания математики как науки, то И.К. Андронов в своей работе изучает зарождение, созревание, развитие, а также становление науки «педагогики математики» и выделяет всего четыре этапа [1]:

1.  Стадия зарождения предмета педагогики математики (конец XVII – нач. XIX вв.);

2.  Этап созревания педагогики математики, связанной с рациональным обучением математике в школе (вторая половина XIX в.);

3.  Этап развития педагогики и дидактики математики (первая половина XX в.);

4.  Этап становления педагогики математики, как педагогической науки (вторая половина XX в. и до наших дней).

В программной статье Р.С. Черкасова приводится периодизация в которой рассматривается не только история отечественного математического образования, но и развитие методики преподавания математики [6]:

1.  Период создания первых светских школ (1700 – 1800 гг.);

2.  Период становления светского школьного образования. Первые научные исследования в области методики преподавания математики (1800 – 1860 гг.);

3.  Период развития массового среднего образования. Широкое обсуждение проблем методики преподавания математики (1860 – 1900 гг.);

4.  Период всероссийских съездов преподавателей математики (1900 – 1917 гг.);

5.   Период становления послереволюционной школы. Поиск новых путей математического образования (1918 - 1932 гг.);

6.   Период совершенствования общеобразовательной трудовой политехнической школы (1932 – 1964 гг.);

7.   Период реформы школьного математического образования и неожиданной ее приостановки (1965 – 1984 гг.);

8.   Период поиска путей восстановления и развития идей реформы (1984 – 1990 гг.);

9.   Период современных преобразований (1990-й и последующие годы).

Несмотря на большинство совпадений, стоит обратить внимание и на некоторые различия в приведенных периодизациях.

Например, у Т.С. Поляковой, так же как и у Р.С. Черкасова, выделено девять периодов. Однако, свою периодизацию Т.С. Полякова начинает с периода зарождения математического образования Киевской Руси, а Р.С. Черкасов с создания первых светских школ (1700-1800 гг.).

Следует заметить, что согласно периодизации, предложенной Т.С. Поляковой, XVIII век относится ко второму этапу и характеризуется как этап становления математического образования.

Можно указать еще одно отличие – Р.С. Черкасов в качестве самостоятельного этапа выделяет время проведения всероссийских съездов (1900 – 1917 гг.), которое у Т.С. Поляковой присоединено к четвертому периоду – реформации классической системы школьного математического образования (60 70-е гг. XIX в. – 1917 г.).

Каждый из авторов в основу построения периодизации кладет какой-либо принцип. Так, например у Т.С. Поляковой – это политика Министерства образования, его уставы, реформы; у О.А. Саввиной – значение, роль и место высшей математики в процессе обучения, у О.В. Тарасовой – становление и развитие геометрического образования; у Ю.М. Колягина – государственные и политические интересы.

Таким образом, в этих периодизациях, имеются как общие тенденции, так и разночтения. В целях более целостного представления о развитии математического образования в России, необходимо свести все к единообразию. То есть, необходимо разработать периодизацию всего содержания математического образования, чего, к сожалению, на настоящий момент не сделано ни в одном из научных исследований.

С целью наглядности приведем сводную таблицу всех рассмотренных авторских периодизаций.



Информация о работе «Изучение истории становления и развития методики преподавания математики в России»
Раздел: Педагогика
Количество знаков с пробелами: 64769
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
120461
1
0

... при ошибке в его выборе, учитывать по уровневый подход. 4.  Математика должна входить в набор обязательных учебных предметов любого из профилей.2 МАТЕМАТИЧЕСКИЙ ФАКУЛЬТАТИВ КАК ВЕДУЩАЯ ФОРМА ПРОФИЛЬНОГО ОБУЧЕНИЯ МАТЕМАТИКЕ В ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЕ2.1. Организационно-педагогические условия успешного функционирования математических факультативов Еще на рубеже XIX и XX вв. некоторые ...

Скачать
50861
0
1

... из современных вариантов прямого метода является метод Блумфилда. Л. Блумфилд (Bloomfield, 1887 – 1949) – известный американский языковед, оказавший существенное влияние на современное состояние методики преподавания иностранных языков в США и в других странах. Концепция Блумфилда заключается в следующем: обучение иностранному языку преследует практические цели – умение говорить и понимать речь; ...

Скачать
18890
0
0

... обычно являлись сочинения византийских авторов. Переводы и многочисленные переписывания их от руки приводили часто к полной потери научности некогда ценного (для своего времени) первоисточника.   2. Зарождение методики обучения биологии в России в Средние века На Руси в Средние века школы создавались, как правило, при церкви или монастыре. Так, в 1648 году боярин Федор Ртищев на свои ...

Скачать
180372
0
0

... , а также политического и экономического состояния России того времени будет посвящена третья глава работы. В заключении подводятся итоги всей дипломной работы, делаются выводы. ГЛАВА 1. РАЗВИТИЕ МУЗЕЙНОГО ДЕЛА В XVIII ВЕКЕ В РОССИИ музейный экспонат коллекция искусство культура Важнейшее значение для понимания музея имеет изучение причин и механизмов его появления и развития. Возникновение ...

0 комментариев


Наверх