3.2 Основные линии математического образования на современном этапе

Современные подходы к организации системы школьного образования, в том числе и математического образования, определяются, прежде всего, отказом от единообразной, унитарной средней школы. Направляющими векторами этого подхода являются гуманизация и гуманитаризация школьного образования.

Гуманитаризация школьного математического образования реализуется как гуманитарная ориентация обучения математике. Гуманитарная ориентация является одним из основополагающих принципов новой концепции и выражается, условно говоря, тезисом «не ученик для математики, а математика для ученика», означающим постановку акцента на личность, на человека.

Этим определяется переход от принципа «вся математика для всех» к внимательному учету индивидуальных параметров личности — для чего конкретному ученику нужна и будет нужна в дальнейшем математика, в каких пределах и на каком уровне он хочет и/или может ее освоить, к конструированию курса «математики для всех», или, более точно, «математики для каждого».

Одной из основных целей учебного предмета «Математика» как компоненты общего среднего образования, относящейся к каждому учащемуся, является развитие мышления, прежде всего, формирование абстрактного мышления, способности к абстрагированию и умению «работать» с абстрактными, «неосязаемыми» объектами. В процессе изучения математики в наиболее чистом виде может быть сформировано логическое и алгоритмическое мышление, многие качества мышления, такие, как сила и гибкость, конструктивность и критичность и т.д.

Эти качества мышления сами по себе не связаны с каким-либо математическим содержанием и вообще с математикой, но обучение математике вносит в их формирование важную и специфическую компоненту, которая в настоящее время не может быть эффективно реализована даже всей совокупностью отдельных школьных предметов.

В то же время конкретные математические знания, лежащие за пределами, условно говоря, арифметики натуральных чисел и первичных основ геометрии, не являются «предметом первой необходимости» для подавляющего большинства людей и не могут, поэтому составлять целевую основу обучения математике как предмету общего образования.

Именно поэтому в качестве основополагающего принципа образовательной технологии в аспекте «математики для каждого» на первый план выдвигается принцип приоритета развивающей функции в обучении математике. Иными словами, обучение математике ориентировано не столько на собственно математическое образование, в узком смысле слова, сколько на образование с помощью математики.

В соответствии с этим принципом главной задачей обучения математике становится не изучение основ математической науки как таковой, а общеинтеллектуальное развитие — формирование у учащихся в процессе изучения математики качеств мышления, необходимых для полноценного функционирования человека в современном обществе, для динамичной адаптации человека к этому обществу.

Формирование условий для индивидуальной деятельности человека, основывающейся на приобретенных конкретных математических знаниях, для познания и осознания им окружающего мира средствами математики остается, естественно, столь же существенной компонентой школьного математического образования.

С точки зрения приоритета развивающей функции конкретные математические знания в «математике для каждого» рассматриваются не столько как цель обучения, сколько как база, «полигон» для организации полноценной в интеллектуальном отношении деятельности учащихся. Для формирования личности учащегося, для достижения высокого уровня его развития именно эта деятельность, если говорить о массовой школе, как правило, оказывается более значимой, чем те конкретные математические знания, которые послужили ее базой.

Гуманитарная ориентация обучения математике как предмету общего образования и вытекающая из нее идея приоритета в «математике для каждого» развивающей функции обучения по отношению к его чисто образовательной функции требует переориентации методической системы обучения математике с увеличения объема информации, предназначенной для «стопроцентного» усвоения учащимися, на формирование умений анализировать, продуцировать и использовать информацию.

Среди общих целей математического образования центральное место занимает развитие абстрактного мышления, включающего в себя не только умение воспринимать специфические, свойственные математике абстрактные объекты и конструкции, но и умение оперировать с такими объектами и конструкциями по предписанным правилам. Необходимой компонентой абстрактного мышления является логическое мышление — как дедуктивное, в том числе и аксиоматическое, так и продуктивное — эвристическое и алгоритмическое мышление.

В качестве общих целей математического образования рассматриваются также умение видеть математические закономерности в повседневной практике и использовать их на основе математического моделирования, освоение математической терминологии как слов родного языка и математической символики как фрагмента общемирового искусственного языка, играющего существенную роль в процессе коммуникации и необходимого в настоящее время каждому образованному человеку.

Гуманитарная ориентация обучения математике как общеобразовательному предмету определяет конкретизацию общих целей в построении методической системы обучения математике, отражающей приоритет развивающей функции обучения. С учетом очевидной и безусловной необходимости приобретения всеми учащимися определенного объема конкретных математических знаний и умений, цели обучения математике образовательной технологии “Школа 2100” могут быть сформулированы следующим образом:

— овладение комплексом математических знаний, умений и навыков, необходимых: а) для повседневной жизни на высоком качественном уровне и профессиональной деятельности, содержание которой не требует использования математических знаний, выходящих за пределы потребностей повседневной жизни; б) для изучения на современном уровне школьных предметов естественнонаучного и гуманитарного циклов; в) для продолжения изучения математики в любой из форм непрерывного образования (в том числе, на соответствующем этапе обучения, при переходе к обучению в любом профиле на старшей ступени школы);

— формирование и развитие качеств мышления, необходимых образованному человеку для полноценного функционирования в современном обществе, в частности эвристического (творческого) и алгоритмического (исполнительского) мышления в их единстве и внутренне противоречивой взаимосвязи;

— формирование и развитие у учащихся абстрактного мышления и, прежде всего, логического мышления, его дедуктивной составляющей как специфической характеристики математики;

— повышение уровня владения учащимися родным языком с точки зрения правильности и точности выражения мыслей в активной и пассивной речи;

— формирование умений деятельности и развитие у учащихся морально-этических качеств личности, адекватных полноценной математической деятельности;

— реализация возможностей математики в формировании научного мировоззрения учащихся, в освоении ими научной картины мира;

— формирование математического языка и математического аппарата как средства описания и исследования окружающего мира и его закономерностей, в частности как базы компьютерной грамотности и культуры;

— ознакомление с ролью математики в развитии человеческой цивилизации и культуры, в научно-техническом прогрессе общества, в современной науке и производстве;

— ознакомление с природой научного знания, с принципами построения научных теорий в единстве и противоположности математики и естественных и гуманитарных наук, с критериями истинности в разных формах человеческой деятельности.


Заключение

В исследовании внимание уделяется поиску конкретных новых событий и явлений и последовательному изложению выверенных фактов истории развития методики преподавания математики в России.

Проблема периодизации, т.е. выявление исторических состояний объекта и их фиксирование в качестве определенных структур, является центральной задачей любого исследования.

Математическое моделирование, универсальность математических методов обуславливают огромную роль математики в самых различных областях человеческой деятельности.

 Основой любой профессиональной деятельности являются умения:

- строить и использовать математические модели для описания, прогнозирования и исследования различных явлений;

- осуществить системный, качественный и количественный анализ;

- владеть компьютерными методами сбора, хранения и обработки информации;

- владеть методами решения оптимизационных задач.

Широкое применение находят математические методы в естествознании и сугубо гуманитарных науках: психологии, педагогике.

Можно сказать, что в недалеком будущем любая часть человеческой деятельности будет еще более широко использовать в своих исследованиях математические методы.

Развитие методики преподавания математики в России можно поэтапно проследить с 18 века.

В 1701 году императорским указом была учреждена в Сухаревой башне математически-навигацкая школа, где преподавал Л. Ф. Магницкий. По поручению Петра I он написал (на церковно-славянском) известный учебник арифметики (1703), а позже издавал навигационные и логарифмические таблицы. Учебник Магницкого для того времени был исключительно добротным и содержательным. Автор тщательно отобрал всё лучшее, что было в существовавших тогда учебниках, и изложил материал ясно, с многочисленными примерами и пояснениями.

Мощным толчком к развитию российской науки послужили реформы М. М. Сперанского. В начале XIX века было создано Министерство народного просвещения, возникли учебные округа, и гимназии стали открываться во всех крупных городах России. При этом содержание курса математики было довольно обширным — алгебра, тригонометрия, приложения к физике и др.

В XIX веке молодая российская математика уже выдвинула учёных мирового уровня.

Первым из них стал Михаил Васильевич Остроградский. Как и большинство российских математиков до него, он разрабатывал преимущественно прикладные задачи анализа. В его работах исследуется распространение тепла, волновое уравнение, теория упругости, электромагнетизм. Занимался также теорией чисел. Академик пяти мировых академий. Важные прикладные работы выполнил Виктор Яковлевич Буняковский — чрезвычайно разносторонний математик, изобретатель, признанный авторитет по теории чисел и теории вероятностей, автор фундаментального труда «Основания математической теории вероятностей».

Фундаментальными вопросами математики в России первой половины XIX века занялся только Николай Иванович Лобачевский, который выступил против догмата евклидовости пространства. Он построил геометрию Лобачевского и глубоко исследовал её необычные свойства. Лобачевский настолько опередил своё время, что был оценён по заслугам только спустя много лет после смерти. Несколько важных открытий общего характера сделала Софья Ковалевская.

Во второй половине XIX века российская математика, при общем прикладном уклоне, публикует и немало фундаментальных результатов. Пафнутий Львович Чебышёв, математик-универсал, сделал множество открытий в самых разных, далёких друг от друга, областях математики — теории чисел, теории вероятностей, теории приближения функций. Андрей Андреевич Марков известен первоклассными работами по теории вероятностей, однако получил выдающиеся результаты и в других областях — теории чисел и математическом анализе. К концу XIX века формируются две активные отечественные математические школы — московская и петербургская.

Таким образом, в работе рассмотрены основные исторические этапы и аспекты развития методики преподавания математики в России, проанализированы методические направления преподавания математики в начальной школе и рассмотрены основные современные направления преподавания математики.


Список литературы

1.  Андронов И.К. Развитие науки математики и молодой, современной науки педагогики математики // Ученые записки МОПИ.1968. Т. 202. Вып.6.

2.  Колягин Ю.М. Русская школа и математическое образование: Наша гордость наша боль. М.: Просвещение, 2001. 318 с.

3.  Полякова Т.С. История отечественного школьного математического образования (Два века). Ростов-на-Дону, 1997.

4.  Саввина О.А. Исторические очерки о преподавании высшей математики в средних учебных заведениях России. Часть 1(XVIII- первая половина XIX вв.), часть 2 (вторая половина XIX – первые семнадцать лет XX вв.): монография. Елец: ЕГУ, 2002. 246с.

5.  Тарасова О.В. Становление и развитие геометрического образования в дореволюционной средней школе России, Автореф. дис….канд. пед. наук. Елец. 2006, 43 с.

6.  Черкасов Р.С. История отечественного школьного математического образования // Математика в школе. 1997. №4, 5, 6.

Епишева О.Б. Общая методика преподавания математики в средней школе / Тобольск, Изд-во ТГПИ им. Д.И. Менделеева, 1997

7. Методика преподавания математики в средней школе : Общая методика; Учебное пособие для студентов физико-математического факультета педагогических институтов / В.А. Оганесян, Ю.М. Колягин, Г.Л. Луканкин, В.Я. Саннинский, -2-е издание переработано и дополнено / М., Просвещение ,1996.

8. Программы школьных факультативов по математике.

9. Новосельцева З.И. Развернутые планы лекций и учебные задания для студентов по курсу "Теоретические основы обучения математике"/ С.-Петербург, Изд-во "Образование", РГПУ, 1997

10. Рогановский Н.М. Методика преподавания математики в средней школе / Минск, Изд-во "Высшая школа", 1990

11. Черкасов Р.С., Столяр А.А. Методика преподавания математики в средней школе / Москва, Изд-во "Просвещение", 1995

12. Овчинников А В. О научных подходах к изучению истории просвещения // Педагогика. -2001,-№2.

13. Назаров Н.В. Периодизация историко-педагогического процесса как компонент деятельности исследователя (методологический аспект): Автореф. дис. ... д-ра псд. наук. - М , 1995. -С.12.

14. Творцы математики: Предшественники соврем. метематики. Пособие для учителей. Пер. с англ. В. Н. Тросникова, С. Н. Киро, Н. С. Киро /Под ред. И с доп. С. Н. Киро. - М.: Просвещение, 1979.

15. Математическая смекалка. - 9-е изд., стер. - М.: Наука. Гл. ред. физ. - мат. лит., 1991.

16. Советский энциклопедический словарь/Гл. ред. А. М. Прохоров. - 3-е изд. - М.: Сов. энциклопедия, 1984

17. Математическая шкатулка. - 3-е изд., - М.: Просвещение, 1964

18. Математическая энциклопедия. - 2-е изд., - М.: Наука, 1993


Информация о работе «Изучение истории становления и развития методики преподавания математики в России»
Раздел: Педагогика
Количество знаков с пробелами: 64769
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
120461
1
0

... при ошибке в его выборе, учитывать по уровневый подход. 4.  Математика должна входить в набор обязательных учебных предметов любого из профилей.2 МАТЕМАТИЧЕСКИЙ ФАКУЛЬТАТИВ КАК ВЕДУЩАЯ ФОРМА ПРОФИЛЬНОГО ОБУЧЕНИЯ МАТЕМАТИКЕ В ОБЩЕОБРАЗОВАТЕЛЬНОЙ ШКОЛЕ2.1. Организационно-педагогические условия успешного функционирования математических факультативов Еще на рубеже XIX и XX вв. некоторые ...

Скачать
50861
0
1

... из современных вариантов прямого метода является метод Блумфилда. Л. Блумфилд (Bloomfield, 1887 – 1949) – известный американский языковед, оказавший существенное влияние на современное состояние методики преподавания иностранных языков в США и в других странах. Концепция Блумфилда заключается в следующем: обучение иностранному языку преследует практические цели – умение говорить и понимать речь; ...

Скачать
18890
0
0

... обычно являлись сочинения византийских авторов. Переводы и многочисленные переписывания их от руки приводили часто к полной потери научности некогда ценного (для своего времени) первоисточника.   2. Зарождение методики обучения биологии в России в Средние века На Руси в Средние века школы создавались, как правило, при церкви или монастыре. Так, в 1648 году боярин Федор Ртищев на свои ...

Скачать
180372
0
0

... , а также политического и экономического состояния России того времени будет посвящена третья глава работы. В заключении подводятся итоги всей дипломной работы, делаются выводы. ГЛАВА 1. РАЗВИТИЕ МУЗЕЙНОГО ДЕЛА В XVIII ВЕКЕ В РОССИИ музейный экспонат коллекция искусство культура Важнейшее значение для понимания музея имеет изучение причин и механизмов его появления и развития. Возникновение ...

0 комментариев


Наверх