4. Часы и параметрическое время популяции (T-компонент теории, time).

Проблема выбора временных границ существования объекта тесно связана с C-компонентом теории, с определением масштабов предвремени, границ в пространстве.

Событие (момент времени) – переход объекта из одного состояния в другое. Тип события определяется уровнем, на котором оно происходит [2].

Предвремя природного объекта – отношение порядка (refl+trans) на множестве событий в этом объекте. Отображением этого порядка на числовой ряд получают числовое выражение предвремени.

Время – интервал между двумя наблюдаемыми событиями одного типа. Измеряется время числом событий между этими двумя событиями.

С биологической точки зрения возраст особи соответствует некоторой стадии индивидуального развития, начиная от зарождения. Стадия развития биологического объекта – синоним его возраста или биологического времени В общем случае возраст однозначно не связан с физическим временем. Исходя из этого и вводят понятие биологического времени.

Экспликацию понятия “биологическое время” целесообразно дать на примере клеточных популяций. Возраст популяции tp определяется средним числом делений Nd первичных клеток посева или, что то же самое, числом циклов в цепи (5): tp порядка tcNd, где t c - среднее время клеточного цикла.

Каждую из биохимических реакций можно трактовать как замену одних молекул другими на молекулярном уровне структурной иерархии (1). Такая замена осуществляется в результате атомно-молекулярных взаимодействий. Поэтому естественным эталоном времени на молекулярном уровне являются атомные часы. Соответственно временные интервалы между «химическими» событиями измеряются в шкале физического времени. Характерное время tm молекулярного уровня определяется скоростями ферментативных реакций. Интервалы между событиями на молекулярном уровне имеют значения порядка секунд.

«Химические» события предопределяют события на всех более высоких уровнях популяции. Поэтому временные интервалы на этих уровнях обычно также измеряются в шкале физического времени.

Органеллы собираются из большого числа молекул. Сборка органелл осуществляется в результате молекулярных и, в том числе, ферментативных взаимодействий. Временные интервалы органелл to имеют значения порядка 102 с.

Клетки формируются в результате образования наборов органелл и молекул и их трансформации. Временные интервалы клеток tc имеют значения порядка 104 с.

Популяция развивается в результате изменения наборов клеток в разных фазах развития. Взаимодействия между клетками носят диффузионно-обменный и контактный характер. Временные интервалы популяции tp порядка 105 с.

Динамика экосистемы зависит от запаса ресурсов, емкости, открытости а также от характера взаимодействия популяции со средой. Временные интервалы экосистемы te имеют значения порядка tp.

Таким образом, для описания движения на всех уровнях популяции может использоваться единая физическая шкала времени.

5. Закон обобщенного движения популяции (L-компонент теории, law).

Для вывода закона обобщенного движения популяции в пространстве состояний предлагается использовать единый «квазихимический» язык для описания событий на всех уровнях популяции. При этом все взаимодействия отображаются квазихимическими уравнениями [5, 8, 9]. Пространство состояний при таком описании можно назвать квазихимическим.

Отобразим с помощью квазихимических уравнений события, определяющие рост популяции на клеточном уровне трехуровневой модели (5).

Популяция развивается в результате усвоения субстратов. Это развитие описывается системой квазихимических реакций (индекс s опускается):

C1+(M1,Me) ® C2 (p11),
C2+(M1,Me) ® C3 (p21)
...........................................

(6)

Cn+(M1,Me)® fC1 (pne(b)) ,

Набор кинетических констант (p11, pne) определяет кинетический вектор роста.

Действие токсикантов Хi, может проявляться на любой стадии роста и описывается сходным образом:

C1+X1® (C1X1) (d11)
C2+X2® (C2X1) (d12)
.........................................

(7)

Cn+Xt® (CnXt) (dnt)
X1,Xt® EE (rx1,rxt)

Здесь (CkXl) – дезактивированные клетки разных стадий, (X1,Xt) – вектор токсикантов; {dij} – матрица коэффициентов ингибирования, (rx1, rxt) - вектор скоростей притока токсикантов из среды.

Кроме того, следует учесть клеточные взаимодействия (автоингибирование). Например, зрелые особи Ci переводят в неактивное состояние молодых Cak:

Ci+C1® Ca1+Ci (ai1)
Ci+C2® Ca2+Ci (ai2)
.......................................

(8)

Ci+Cm® Cam+Ci (aim)

Взаимодействия клеток описываются кинетическим вектором автоингибировния (ai1,…, aim).

В открытых системах учитывается взаимодействие экосистемы со средой ЕЕ:

EЕ C1 w1
EЕ C2 w2

--------

(9)

EЕ Cn wn

где (w1,…, wn) - вектор скоростей притока особей С1,…, Сn из среды.

Система псевдохимических реакций (6)-(9) описывается стандартным образом [10-12] системой кинетических уравнений, представляющих собой закон обобщенного движения популяции в пространстве состояний:

dC/dt = Биологическое время и его моделирование в квазихимическом пространствеБиологическое время и его моделирование в квазихимическом пространствеS KC - S ACC - S DCX + S R + S W

(10)

Здесь C = (c1, c2, c3, cm) вектор количества клеток в разных фазах, K, A, D, R, W – матрицы кинетических параметров.

С помощью различных приближений [11] система уравнений четвертого порядка может быть редуцирована до второго. Такая система достаточно информативна и позволяет качественно, а во многих случаях и количественно, описать развитие популяций различных видов.

Рассмотрим редуцированную модель (1) из двух стадий – роста и деления, дополненных стадией самоингибирования:

C1+M1® Cm (p)
Cm+M2® fC1 (b)
C1® Cd (g)
C1+Cm® Ca+C1 (a) (11)
C1« EE (w1)
C1+X1« (C1X11) (d11)
C1+X2« (C1X12) (d12)
Cm+X1« (CmX21) (d21)
Cm+X2« (CmX22) (d22)

Здесь использованы те же обозначения, что и в системах (6) – (9) (индексы опущены): С1 – множество клеток разного возраста до митоза, Сm – митотические клетки; Ca – клетки в анабиозе; (CkXl) – ингибированные клетки разных стадий; M1, M2 –субстраты.

Следует отметить, что двухстадийный цикл (фазы S и M) наблюдается на ранних стадиях развития зародышей пойкилотермных животных [15, 16]. На этом основании в этот период в качестве единичного интервала времени можно использовать длительность tc клеточного цикла («детлаф»).

В предположении постоянства концентраций субстратов М1, М2 кинетика цепного роста популяции, состоящей из особей С1 и Сm, описывается системой:

dc1/dt = – px c1 + f b cm + w1

( 12.1 )

dcm/dt = p c1 – bx cm – a c1 cm

( 12.2 )

Здесь c1, cm – количества растущих и митотические клеток; a, b, p –коэффициенты автоингибирования, рождения и роста популяции в отсутствии ингибиторов. В коэффициенты р и b включены постоянные количества субстратов М1 и М2. f - коэффициент размножения. Коэффициенты bx и px – функции количества ингибиторов x1 и x2:

px= p+d1; bx = b + d2 , где d1 = d11 x1 + d12 x2; d2 = d21 x1 + d22 x2 . (13)

Система уравнений (12) представляет собой закон обобщенного движения двухстадийной популяции в пространстве состояний. Преобразованная в виде:

dc1 = (-px c1 + f b cm + w1) dt, dcm =(p c1 - bx cm - a c1 cm) dt, ( 12а )

система (12) определяет соотношение между интервалами биологического dci и физического dt времени.

В приближении квазистационарности для митотических клеток Сm система (12.1-12.2) сводится к одному уравнению:

dc1/dt=pxc1(K1 –c1)/(K2+ c1) + w1

(14)

Здесь K1 =c1``=(f b p - px bx)/(a px); K2=bx/a.

(15)

Динамику численности популяции с1(t) в общем случае нельзя выразить в виде явной функции от времени t. Поэтому используют обратную функцию t(c1), получаемую интегрированием (14) по с1:

t(c1)=ln{(c1/c0)[(K1-c0)/(K1-c1)](1+n)}/(npx), где n= K1 /K2. (16)

Уравнение (16) в явном виде отображает физическое время на множество состояний популяции.


Информация о работе «Биологическое время и его моделирование в квазихимическом пространстве»
Раздел: Наука и техника
Количество знаков с пробелами: 19380
Количество таблиц: 26
Количество изображений: 5

Похожие работы

Скачать
447894
0
7

... и наблюдателя (экперимент М. Стормса) Рисунок 4 3.3. Г.М. Андреева, Н.Н. Богомолова, Л.А. Петровская. Теории диадического взаимодействия (Андреева Г.М., Богомолова Н.Н., Петровская Л.А. Современная социальная психология на Западе (теоретические направления). М.: Изд-во Моск. ун-та, 1978. С. 70-83) Бихевиористская ориентация включает в качестве одного из методологических принципов ...

0 комментариев


Наверх