1. Принцип работы и назначение телескопа.
Телескоп, астрономический прибор для наблюдения небесных светил. Хорошо сконструированный телескоп способен собирать электромагнитное излучение в различных диапазонах спектра. В астрономии оптический телескоп предназначен для увеличения изображения и сбора света от слабых источников, особенно невидимых невооруженным глазом, т.к. по сравнению с ним способен собирать больше света и обеспечивать высокое угловое разрешение, поэтому в увеличенном изображении можно видеть больше деталей. В телескопе-рефракторе в качестве объектива используется большая линза, собирающая и фокусирующая свет, а изображение рассматривается с помощью окуляра, состоящего из одной или нескольких линз. Основной проблемой при конструировании телескопов-рефракторов является хроматическая аберрация (цветная кайма вокруг изображения, создаваемого простой линзой вследствие того, что свет различных длин волн фокусируется на разных расстояниях.). Её можно устранить, используя комбинацию выпуклой и вогнутой линз, однако линзы больше некоторого предельного размера (около 1 метра в диаметре) изготовить невозможно. Поэтому в настоящее время предпочтение отдаются телескопам-рефлекторам, в которых в качестве объектива используется зеркало. Первый телескоп-рефлектор изобрел Ньютон по своей схеме, называемой системой Ньютона. Сейчас существует несколько методов наблюдения изображения: системы Ньютона, Кассегрена (положение фокуса удобно для регистрации и анализа света с помощью других приборов, таких, как фотометр или спектрометр), куде (схема очень удобна, когда для анализа света требуется громоздкое оборудование), Максутова (т.н. менисковая), Шмидта (применяется, когда необходимо сделать масштабные обзоры неба).
Наряду с оптическими телескопами имеются телескопы, собирающие электромагнитное излучение в других диапазонах. Например, широко распространены различные типы радиотелескопов (с параболическим зеркалом: неподвижные и полноповоротные; типа РАТАН-600; синфазные; радиоинтерферометры). Имеются также телескопы для регистрации рентгеновского и гамма-излучения. Поскольку последнее поглощается земной атмосферой, рентгеновские телескопы обычно устанавливаются на спутниках или воздушных зондах. Гамма-астрономия использует телескопы, располагаемые на спутниках.
Вычисление периода обращения планеты на основе третьего закона Кеплера.Тз = 1год
аз = 1 астрономическая единица
1 парсек = 3,26 светового года = 206265 а. е. = 3 * 1011 км.
БИЛЕТ № 6 Способы определения расстояний до тел Солнечной системы и их размеров.Сперва определяется расстояние до какой-нибудь доступной точки. Это расстояние называется базисом. Угол, под которым из недоступного места виден базис, называют параллаксом. Горизонтальным параллаксом называют угол, под которым с планеты виден радиус Земли, перпендикулярный лучу зрения.
p² – параллакс, r² – угловой радиус, R – радиус Земли, r – радиус светила.
Радиолокационный метод. Он заключается в том, что на небесное тело посылают мощный кратковременный импульс, а затем принимают отраженный сигнал. Скорость распространения радиоволн равна скорости света в вакууме: известна. Поэтому если точно измерить время, которое потребовалось сигналу, чтобы дойти до небесного тела и возвратиться обратно, то легко вычислить искомое расстояние.
Радиолокационные наблюдения позволяют с большой точностью определять расстояния до небесных тел Солнечной системы. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера.
Лазерная локация Луны. Вскоре после изобретения мощных источников светового излучения — оптических квантовых генераторов (лазеров) — стали проводиться опыты по лазерной локации Луны. Метод лазерной локации аналогичен радиолокации, однако точность измерения значительно выше. Оптическая локация дает возможность определить расстояние между выбранными точками лунной и земной поверхности с точностью до сантиметров.
Для определения размеров Земли определяют расстояние между двумя пунктами, расположенными на одном меридиане, затем длину дуги l, соответствующей 1° -n.
Для определения размеров тел Солнечной системы можно измерить угол, под которым они видны земному наблюдателю – угловой радиус светила r и расстояние до светила D.
R=D sin r.
Учитывая p0 – горизонтальный параллакс светила и, что углы p0 и r малы,
Определение светимости звезды на основе данных о ее размерах и температуре.L – светимость (Lc = 1)
R – радиус (Rc = 1)
T – Температура (Tc = 6000)
БИЛЕТ № 7... ТÅ= 1 год. Кометы и метеоритные тела движутся по эллиптическим, параболическим и гиперболическим траекториям. Билет № 2. Существует 2 географические координаты: географическая широта и географическая долгота. Астрономия как практическая наука позволяет находить эти координаты (рисунок «высота светила в верхней кульминации»). Высота полюса мира над горизонтом равна широте места наблюдения ...
... системы. С помощью телескопов производятся не только визуальные и фотографические наблюдения, но и фотоэлектрические и спектральные наблюдения. Наземные наблюдения дополняются внеатмосферными со спутников и космических станций. Билет № 6. Сперва определяется расстояние до какой-нибудь доступной точки. Это расстояние называется базисом. Угол, под которым из недоступного места виден базис, ...
... трубецкие, П.А.Флоренский, С.Л.Франк...) которые составили течение богоискательства со свойственным ему иррационализмом, персонализмом и мистическим пониманием свободы и творчества. Нельзя не упомяныть Г.В Плеханова Билет 8 1. Философия Гегеля. Первый изложил принцип диалектического метода. Истинное значение и революционный характер гегелевской философии состояло в том, что она разделалась со ...
... быть выведены на печать. На экране рисунки могут быть статическими (неподвижными) или динамическими (движущимися). В последнее время машинная графика выделилась в самостоятельный раздел информатики с многочисленными приложениями. Средствами машинной графики создается не только печатная продукция, но и рекламные ролики на телевидении, мультфильмы. Объясним, как кодируется изображение в памяти ...
0 комментариев