2. Принципы гравитационного моделирования

Основные положения используемой в данной работе методики можно сформулировать следующим образом. На первом этапе определяется исходная плотностная модель коры и верхней мантии, параметры которой задаются по имеющимся априорным данным. В настоящем исследовании эта модель состоит из двух слоев: осадочного чехла и консолидированной части коры, параметры которых существенно различны. Более дробное деление невозможно для столь обширной территории, так как только поверхности фундамента и Мохо, являясь опорными границами, устойчиво выделяются практически всеми сейсмическими методами.

Осадочный слой обычно неоднороден как по глубине, так и по простиранию. Более того, вариации плотности внутри осадочного чехла часто создают гораздо более существенный гравитационный эффект, чем вариации глубины до фундамента. Это особенно ясно проявляется в тех случаях, когда мощность осадочного чехла превышает 7-8 км, так плотность осадочных пород около его подошвы близка к плотности вмещающих кристаллических пород. Основные осадочные бассейны детально изучены с использованием различных методов разведочной геофизики и для них имеются опорные данные бурения. Таким образом, имеется принципиальная возможность построить генерализованную плотностную модель осадочного чехла, не используя на этом этапе интерпретацию гравитационного поля.

Данные бурения дают чрезвычайно сложную структуру осадков, включая множество локальных границ [Авчан, Озерская, 1985]. Попытки объединить эти границы в единую модель (хотя бы для одного осадочного бассейна) обычно заканчиваются неудачей. Единственно приемлемый для регионального исследования подход заключается в том, чтобы учесть общие закономерности изменения плотности осадков с глубиной и скорректировать эти зависимости, принимая во внимание литологию конкретного бассейна. Таким образом, каждому осадочному бассейну, или, если для этого имеются основания, его части ставится в соответствие определенная зависимость плотности осадков от глубины. Возможные (и часто весьма значительные) отклонения от общей зависимости имеют локальный характер и не являются объектом данного исследования. Такой подход успешно применялся в ряде работ и доказал свою продуктивность [Artemyev et al., 1994a; Kaban and Mooney, 2001; Yegorova and Starostenko, 1999]. В данной работе используется региональная модель осадочного чехла, построенная в работах [Artemjev et al., 1993, 1994а, 1994b; Gordin and Kaban, 1995].

Влияние плотностных неоднородностей консолидированной коры в принципе также можно оценить, используя данные о средних скоростях сейсмических волн в ней. Однако надежность этой информации, если рассматривать всю территорию Северной Евразии, меньше, чем надежность других групп информации, включая положение границы Мохо. Только на длинных профилях ГСЗ, выполненных в центре ГЕОН с использованием разного типа волн, весьма незначительные вариации средней скорости в консолидированной коре существенно превосходят ошибку их определения [Егоркин, 1991]. Важно отметить, что данная ошибка может быть систематической и зависеть от используемого метода интерпретации. Кроме того, пересчет скоростей в плотности также содержит существенный элемент неопределенности [Красовский, 1989; Christensen and Mooney, 1995]. Учитывая все вышеизложенное, были использованы две модели коры. В первой модели плотность консолидированной коры считается постоянной. Соответственно, остаточные аномалии, получаемые после устранения эффекта коры из наблюденного гравитационного поля, отображают влияние как плотностных неоднородностей верхней мантии, так и консолидированной коры. Во второй модели учитываются плотностные неоднородности консолидированной коры, полученные на основании скоростей сейсмических волн. Сопоставление этих результатов позволяет получить более обоснованные выводы.

Гравитационное поле исходной модели коры вычисляется относительно горизонтально однородной базовой модели. Если нижняя граница модели также горизонтальна, то результирующее поле с точностью до постоянной составляющей не будет зависеть от выбора базовой модели. Для того, чтобы исключить из рассмотрения также и нижнюю границу, до которой производятся расчеты, мы накладываем на базовую модель единственное условие: плотность мантии в ней должна равняться средней плотности мантии, которая принимается в начальных построениях. В данном случае используется двухслойная референц модель, в которой верхняя часть коры имеет плотность 2,7 г/см3, а нижней - 2,9 г/см3, плотность мантии 3,35 г/см3. Глубина до нижней границы составляет 34,3 км, что соответствует средней глубине до границы Мохо в пределах исследуемой области. Глубина до границы раздела плотности 2,7/2,9 г/см3 составляет 14 км, при этом средняя плотность коры равна 2,82 г/см3, что согласуется с мировыми данными [Mooney et al., 1998].

На втором этапе вводятся дополнительные плотностные неоднородности верхней мантии. Важно отметить, что эти дополнительные аномалии плотности таковы, что сумма аномальных масс в каждой литосферной колонке, включая как известные a-priori массы топографии, аномальные массы коры, включая осадочный чехол и консолидированную кору, и вариации границы Мохо, так и дополнительные, равна нулю. Поле, создаваемое дополнительными плотностными неоднородностями верхней мантии, вычитается из мантийных аномалий силы тяжести, в результате получаются изостатические аномалии силы тяжести. Эти аномалии можно рассматривать как вторую важнейшую характеристику геодинамического режима тектонической структуры.


Информация о работе «Гравитационная модель коры и верхней мантии Северной Евразии»
Раздел: География
Количество знаков с пробелами: 40068
Количество таблиц: 19
Количество изображений: 0

Похожие работы

Скачать
26423
0
0

... астеносферы лежит на 50 км выше и имеет мощность в 2 – 3 раза больше, чем под континентами, и практически отсутствует под котловинами. Следовательно, в масштабах Земли изостазия физически нереальна, во всяком случае, на уровне астеносферы. Аппроксимация же гидростатических условий на уровне 400 – 600 км весьма проблематична из-за существенного возрастания давления и сферичности Земли. Наличие ...

Скачать
46685
0
0

... , Е. Н. Люстихом был предложен термин «субстрат» для обозначения самых верхних твердых слоев верхней мантии, лежащих сразу под разделом Мохоровичича. Вернемся к вопросу о дифференциации в тектоносфере Земли. Базальтовая кора океанов могла образоваться непосредственно путем выплавления базальта в астеносфере и подъема его как относительно легкого материала к поверхности. Формирование материковой ...

Скачать
108721
0
0

... , пределах изменяются по меридиональному разрезу плотность и соленость придонных вод. В целом эти общие положения, казалось бы, должны указывать на второстепенное значение экзогенных процессов в формировании рельефа дна Мирового океана. Однако появляется все больше данных, свидетельствующих о значительной деятельности экзогенных факторов на дне океана, причем не только в прибрежной зоне, где ...

Скачать
508393
2
1

... инерциальных системах отсчета. Пространственно-временной континуум – неразрывная связь пространства и времени и их зависимость от системы отсчета. Тема 11. Основные концепции химии   1. Химия как наука, ее предмет и проблемы Важнейшим разделом современного естествознания является химия. Она играет большую роль в решении наиболее актуальных и перспективных проблем современного общества. К ...

0 комментариев


Наверх