2.4. Некоторые транспортные белки просто переносят какое-ли-

бо растворенное вещество с одной стороны мембраны на другую. Та-

кой перенос называется унипортом. Другие белки являются контранс-

портными системами. В них происходит:

а) перенос одного вещества зависит от одновременного / последо-

вательного / переноса другого вещества в том же направлении

(симпорт).

б) перенос одного вещества зависит от одновременного / последо-

вательного / переноса другого вещества в противоположном

направлении (антипорт).

Например, большинство животных клеток поглощает глюкозу из

внеклеточной жидкости, где ее концентрация высока путем пассивно-

го транспорта осуществляемого белком, который работает как уни-

порт. В то же время, клетки кишечника и почек поглощают ее из лю-

менального пространства кишечника и из почечных канальцев, где ее

концентрация очень мала, с помощью симпорта глюкозы и ионов Na.

(рис. 2.3.)

Итак, мы рассмотрели осноаные виды пассивного транспорта ма-

лых молекул через биологические мембраны.

2.5. Часто бывает необходимым обеспечить перенос через мемб-

рану молекул против их электрохимического градиента. Такой про-

цесс называется активным транспортом и осуществляется белками-пе-

реносчиками, деятельность которых требует затрат энергии. Если

связать белок-переносчик с источником энергии, можно получить ме-

ханизм, обеспечивающий активный транспорт веществ через мембрану.

(рис. 2.4.).

Одним из главных источников энергии в клетке является гидро-

лиз АТФ до АДФ и фосфата. На этом явлении основан важный для жиз-

недеятельности клетки механизм (Na + K)-насос (рис. 2.5). Он слу-

жит прекрасным примером активного транспорта ионов. Концентрация

K внутри клетки в 10-20 раз выше, чем снаружи. Для Na картина

противоположная. Такую разницу конценраций обеспечивает работа

(Na + K)-насоса, который активно перекачивает Na из клетки, а K в

клетку. Известно, что на работу (Na + K)-насоса тратится почти

треть всей энергии необходимой для жизнедеятельности клетки. Вы-

шеуказанная разность концентраций поддерживается со следующими

целями:


 - 6 -

1) Регулировка объема клеток за счет осмотических эффектов.

2) Вторичный транспорт веществ (будет рассмотрен ниже).

Опытным путем было установлено, что:

1) Транспорт ионов Na и K тесно связан с гидролизом АТФ и

не может осуществляться без него.

2) Na и АТФ должны находиться внутри клетки, а K снаружи.

3) Вещество уабаин ингибирует АТФазу только находясь вне

клетки, где он конкурирует за участок связывания с K.

(Na + K)-АТФаза активно транспортирует Na наружу а K внутрь

клетки. При гидролизе одной молекулы АТФ три иона Na выкачиваются

из клетки а два иона K попадают в нее (рис. 2.6.).

1) Na связывается с белком.

2) Фосфорилирование АТФазы индуцирует конформационные

изменения в белке, в результате чего ъ

3) Na переносится на внешнюю сторону мембраны и высвобо-

ждается.

4) Связывание K на внешней поверхности.

5) Дефосфорилирование.

6) Высвобождение K и возврат белка в первоначальное состо-

яние.

По всей вероятности в (Na + K)-насосе есть три участка свя-

зывания Na и два участка связывания K. (Na + K)-насос можно зас-

тавить работать в противоположном направлении и синтезировать

АТФ. Если увеличить концентрации ионов с соответствующих сторон

от мембраны, они будут проходить через нее в соответствии со сво-

ими электрохимическими градиентами, а АТФ будет синтезироваться

из ортофосфата и АДФ с помощью (Na + K)-АТФазы.

2.6. Если бы у клетки не существовало систем регуляции осмо-

тического давления, то концентрация растворенных веществ внутри

нее оказалась бы больше их внешних концентраций. Тогда концентра-

ция воды в клетке была бы меньшей, чем ее концентрация снаружи.

Вследствие этого, происходил бы постоянный приток воды в клетку и

ее разрыв. К счастью, животные клетки и бактерии контролируют ос-

мотическое давление в своих клетках с помощью активного выкачива-

ния неорганических ионов таких как Na. Поэтому их общая концент-

рация внутри клетки ниже чем снаружи.


- 7 -

Клетки растений имеют жесткие стенки, которые предохраняют

их от набухания. Многие простейшие избегают разрыва от поступаю-

щей внутрь клетки воды с помощью специальных механизмов, которые

регулярно выбрасывают поступающую воду.


Информация о работе «Транспорт веществ через биологические мембраны»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 17822
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
17990
0
0

... ее из лю-менального пространства кишечника и из почечных канальцев, где ееконцентрация очень мала, с помощью симпорта глюкозы и ионов Na.(рис. 2.3.)Итак, мы рассмотрели осноаные виды пассивного транспорта ма-лых молекул через биологические мембраны. 2.5. Часто бывает необходимым обеспечить перенос через мемб-рану молекул против их электрохимического градиента. Такой про-цесс называется ...

Скачать
31227
4
1

... Формирование бислоя является особым свойством молекул липидов и реализуется даже вне клетки. Важнейшие свойства бислоя: - способность к самосборке - текучесть - ассиметричность. 1.2. Хотя основные свойства биологических мембран определяются свойствами липидного бислоя, но большинство спецефических функций обеспечивается мембранными белками. Большинство из них пронизывают бислой в виде одиночной ...

Скачать
132610
1
0

... ). Решение множества ключевых проблем современности, таких как производство продуктов питания, многих лекарств и других веществ связано с активным внедрением в жизнь биотехнологий. Столь ощутимый прогресс биологии был бы невозможен без ее активного взаимодействия с другими науками. Но парадокс современного состояния науки состоит в том, что множество исследований оказывается "на стыке наук", для ...

Скачать
51887
2
10

... + щелочная ср. NH2 R R R COOH COO – COO – Катион  Амфион Анион Таким образом, фактором, определяющим поведение белка как катиона или аниона, является реакция среды, которая определяется концентрацией водородных ионов и выражается величиной рН. Однако ...

0 комментариев


Наверх