2. ПАРАМЕТРЫ ОБМОТКИ ЯКОРЯ


В МПТ малой мощности применяются простые петлевые обмотки при 2р = 2 и простые волновые при 2р = 4. Кроме того для машин малой мощности весьма перспективно применение постоянных магнитов позволяющих уменьшить потребляемую из сети мощность за счёт отсутствия тока возбуждения повысить КПД а в ряде случаев уменьшить габариты машины.

Полезный поток одного полюса машины

(2.1)

Число проводников обмотки якоря

(2.2)

где а  число параллельных ветвей якорной обмотки машины (для машин малой мощности обычно а = 1).

10. При выборе числа пазов необходимо руководствоваться следующим. Слишком малое число пазов приводит к значительным пульсациям ЭДС машины а слишком большое число  к уменьшению ширины зубцов и их насыщению. Необходимо учитывать также что увеличение числа зубцов приводит к нерациональному использованию площади паза так как при уменьшении размеров пазов площадь занимаемая изоляцией остаётся прежней. Предпочтение отдаётся нечётному числу в этом случае уменьшаются пульсации поля под полюсами вызывающие появление переменной ЭДС ухудшающей коммутацию. Однако при нечётном числе пазов становится затруднительной машинная намотка якоря. Для МПТ малой мощности число пазов якоря

Z = (3  4) Da (23)

где диметр якоря измерен в сантиметрах.

Число коллекторных пластин выбирается равным числу элементарных пазов исходя из соотношения:

K = ZЭ = uП Z (2.4)

где uП  число элементарных пазов в реальном пазу, выбирается таким образом чтобы среднее напряжение между коллекторными пластинами не превышало допустимого значения:

Обычно uП = 2  3. В случае волновой обмотки при нечётном числе пазов якоря uП должно быть числом нечётным так как только при этом условии возможно выполнение симметричной обмотки с целым шагом.

Число витков в секции обмотки якоря

(2.5)

Число витков в секции должно быть целым. Поэтому рассчитанное по (2.5) значение округляется а число проводников обмотки якоря соответствующим образом корректируется. Окончательные значения uП и Wспринимаются после проверки коммутации т.к. величина реактивной ЭДС определяющей характер процесса коммутации пропорциональна числу Wс.

Для простой петлевой обмотки шаги обмотки якоря

; (2.6)

для простой волновой обмотки

если y  чётное число

если y  нечётное число.

После определения параметров якорной обмотки составляется таблица обхода и вычерчивается её схема.

Линейная нагрузка якоря принимается с учётом скорректированного числа проводников обмотки якоря

(2.7)


Полученная величина линейной нагрузки не должна отличаться от ранее принятой более чем на 5%. В противном случае в качестве исходного значения AS принимается найденное по (2.7) и производится повторный расчёт.


3. РАЗМЕРЫ ЗУБЦОВ, ПАЗОВ И ПРОВОДНИКОВ

ОБМОТКИ ЯКОРЯ


В МПТ малой мощности часто используются пазы круглой овальной и трапецеидальной формы. Наиболее технологичны и просты в изготовлении пазы круглой формы. Поэтому если площадь круглого паза соответствует расчёту то при всех прочих равных условиях предпочтение отдаётся круглому пазу. Овальная и трапецеидальная формы паза увеличивают его площадь по сравнению с пазом круглой формы при том же диаметре якоря.

Площадь паза якоря зависит от количества и сечения проводников обмотки якоря. В свою очередь сечение проводника определяется величиной тока якоря и его допустимой плотностью которая зависит от режима работы машины способа охлаждения класса изоляции коэффициента теплоотдачи.

15. Интенсивность нагрева МПТ определяется удельной тепловой нагрузкой (Вт/м2) которая для продолжительного режима записывается в виде

q = M  (1 + 01 V) (3.1)

где M  предельно допустимое превышение температуры корпуса над температурой окружающей среды определяемое классом изоляции. Температура окружающей среды принимается при расчётах равной 400 С

  коэффициент теплоотдачи поверхности якоря в неподвижной среде составляющий в среднем 14  18 Вт/(К м2) для машин закрытого исполнения без вентилятора и 36  44 Вт/(К м2) для машин защищённого исполнения с встроенным вентилятором

V  окружная скорость якоря в машинах без вентилятора, V = Va.

Работа встроенного вентилятора приводит к увеличению потока охлаждающего воздуха и, следовательно, к увеличению скорости его движения V:

V = (Va2 + Vв2)1/2 (3.2)

где Vв  окружная скорость лопаток вентилятора,

Vв =  Dв nн/ 60; (3.3)

Dв  диаметр колеса центробежного вентилятора,

Dв= (125  14) Da.

Удельная тепловая нагрузка для кратковременного режима работы

(3.4)

здесь tр  время работы двигателя с

Tр  постоянная времени нагрева вращающегося якоря, с 

. (3.5)

. (3.6)

Для МПТ работающих в повторно-кратковременном режиме,

(3.7)

где функция (tр/Tр) определена зависимостью времени работы машины и паузы:

(tр/Tр) = 1+ exp (  а1 tр/ Tр) + exp ( 2 а1 tр/ Tр) +

+  exp  (n 1) а1 tр/ Tр (3.8)

где n  число циклов работы

(3.9)

ТП  постоянная времени охлаждения неподвижного якоря, с;

tП  время паузы, с.

16. Выражая потери в якорной цепи машины через линейную нагрузку и плотность тока в проводниках обмотки можно получить выражение плотности тока при заданной линейной нагрузке и допустимом превышении температуры M:

а) для МПТ при 2р = 2 и n  5000 об/мин

(3.10)

при 5000  n  10000 об/мин

(3.11)

при 10000  n  15000 об/мин

(3.12)

б) для МПТ при 2р = 4 и при n  5000 об/мин

(3.13)

при 5000  n  10000 об/мин

(3.14)

при 10000  n  15000 об/мин

. (3.15)

Предварительное сечение проводников обмотки якоря

(3.16)

По полученному сечению рассчитывается диаметр провода (выбирается ближайшее его значение) марка и необходимый класс изоляции (прилож., табл. 2). Для выбранного провода определяется сечение и реальная плотность тока в якорной обмотке.

Предварительная величина площади паза якоря

(3.17)

где Nп число проводников в пазу якоря,

Nп = N / Z (3.18)

Sa.из сечение изолированного проводника якорной обмотки,

Sa.из =  dиз2 / 4 (3.19)

dиз диаметр изолированного проводника обмотки якоря

Кз.п коэффициент заполнения паза предварительное значение которого

принимается равным 030  046 При меньших значениях Кз.п заполнение паза будет рыхлым т.е. проводники обмотки будут подвижными. При больших значениях Кз.п выполнение обмотки становится невозможным т.е. в пазу не удаётся разместить необходимое число проводников.

Размеры паза и зубцов. Рассчитав площадь паза необходимо определить его размеры. Поскольку наиболее технологичным является круглый паз, проверяется возможность его реализации. Диаметр круглого паза

dп = (4 Sп /  )0,5. (3.20)

Кроме того необходимо учесть наличие щели паза через которую производится укладка проводников обмотки. Высота щели hщ обычно не превышает 10  15 мм а её ширина bщ= (2  8)dиз причём больший размер для более тонких проводов. Приняв указанные размеры и определив число пазов и их диаметр рисуют в масштабе эскиз листа якоря (рис.1).

Если необходимое число пазов удаётся разместить на листе якоря то определяют размеры зубцов для трёх сечений.

Зубцовое деление якоря

tZ =  Da / Z. (3.21)

Максимальная ширина зубца

bZ1 = tZ bщ. (3.22)

Ширина зубца в основании паза

(3.23)

Рис.1. Пазы якоря круглой формы

Ширина паза в среднем сечении

(3.24)

Минимальную ширину зубца желательно проверить по величине магнитной индукции в этом сечении исходя из того что весь поток зубцового деления проходит через зубец:

(3.25)

где Kз.с коэффициент заполнения стали. Его величина зависит от толщины листа и вида изоляции. Для современных сталей величина Kз.с=095  097 (прилож., табл. 4).

Максимальная величина магнитной индукции в зубцах МПТ малой мощности не превышает 18 Тл а ширина зубцов якоря по технологическим условиям штамповки должна быть не менее 15 мм.

На практике чаще всего реализовать круглый паз необходимой площади не удаётся. Поэтому наиболее распространены пазы якоря овальной или трапецеидальной формы (рис.2) позволяющие получать значительные площади паза при небольшой его ширине. Важным достоинством пазов указанной формы является постоянная ширина зубцов якоря которая как и в предыдущем случае, должна быть не менее 15 мм.

Рис.2. Пазы якоря трапецеидальной формы


Ширина зубца может быть рассчитана исходя из допустимых значений магнитной индукции Bzпо выражению (3.25).

Для определения размеров паза в крупном масштабе изображается лист якоря. При известном числе пазов окружность якоря разбивается на соответствующее число секторов по осям которых в том же масштабе изображаются зубцы якоря необходимой ширины.

Ориентировочная высота паза рассчитывается по выражению

hп = (Dа dв 2 ha), (3.26)

hп = (022  03) Dа.

Диаметр вала МПТ

dв = (018  024) Dа.

Высота спинки якоря выбирается из допустимых значений магнитной индукции на этом участке:

(3.27)

где Ва магнитная индукция в спинке якоря максимальная величина которой не должна превышать 15 Тл.

Таким образом задаваясь величинами диаметра вала спинки якоря и зная диаметр якоря можно уточнить высоту паза hП.

Максимальная и минимальная ширина овального паза может быть приближённо рассчитана по следующим выражениям:

 (3.28)

 (3.29)

а высота средней части паза

h12 = hп  hщ 2   2. (3.30)

По рисунку паза рассчитывается его площадь которая корректируется исходя из условия размещения проводников в пазу Так для трапецеидального паза

. (3.31)

После этого можно уточнить размеры зубца якоря в частности его ширину. Увеличение ширины зубца приводит к уменьшению его магнитной индукции следовательно уменьшению потерь в стали зубцов уменьшению МДС обмотки возбуждения её веса и габаритов.

При 2р =2 средняя длина проводников обмотки якоря

la = l0 + 12 Da (3.32)

при 2р =4

la = l0 + 08 Da. (3.33)

В нагретом состоянии сопротивление обмотки якоря

. (3.34)

В этом выражении M = 57  106 (Омм)-1  электропроводность меди при температуре окружающей среды. Температурный коэффициент меди

K= 1 + 0004 (  окр) (3.35)

где   рабочая температура;

окр  температура окружающей среды, окр= 20 0С.


Падение напряжения в обмотке якоря

Ua = Ia Ra (3.36)

Величина Ua составляет обычно 10  20 от номинального напряжения. Меньшие значения относятся к машинам с высокими номинальными напряжениями Uан110 В работающим в длительном режиме.


КОЛЛЕКТОР И ЩЁТОЧНЫЙ АППАРАТ


В настоящее время коллекторы машин малой мощности выполняются чаще всего с пластмассовой изоляцией. Коллекторные пластины изготовляются из твёрдотянутой меди трапецеидального сечения с впадинами в виде «ласточкина гнезда» (рис. 3).

В некоторых конструкциях коллекторные пластины изолируются друг от друга миканитовыми прокладками толщиной 06  08 мм чаще для изоляции используется та же пластмасса что и для крепления коллекторных пластин.

Более совершенными технологиями изготовления коллекторов являются малоотходные с использованием цельных заготовок из листов меди или медного порошка.

Толщина кольца коллектора выбирается с учётом износа коллектора и дальнейшей его проточки и составляет

К = (0102) DK .

Рис.3. Коллектор машины постоянного тока

Коллектор должен быть изолирован от вала машины Для этой цели также используется изолирующая пластмасса.

Щётки и прижимные пружины размещаются в трубчатых или коробчатых щёткодержателях.

Различают радиальные и реактивные щёткодержатели. В радиальных щёткодержателях щётка располагается перпендикулярно поверхности коллектора в реактивных  под некоторым углом по ходу вращения коллектора обеспечивая при этом более надёжный контакт. Реактивные щёткодержатели обычно применяются в нереверсивных МПТ имеющих одно направление вращения.

Предварительный диаметр коллектора

DK = (05  09) Da.

В машинах малой мощности ширина коллекторной пластины bK принимается равной 25 мм. Толщина изоляции между коллекторными пластинами bиз = 06 08 мм.

Коллекторное деление

(4.1)

Для правильно спроектированного коллектора должно выполняться соотношение

tк = bк+ bиз. (4.2)

Ширина коллекторной пластины при этом должна соответствовать ГОСТ 413475. Определив tк уточняют диаметр коллектора используя выражение (4.1).

Окружная скорость коллектора

Vк =  Dк n / 60. (4.3)

В МПТ малой мощности для улучшения коммутации наиболее часто используются твёрдые медно-графитовые или электрографитированные щётки, которые меньше подвержены износу, что увеличивает надёжность работы машины.

Размеры щёток выбираются исходя из допустимой для каждого типа щёток плотности которая лежит в широких пределах: 40  200 А/см2 (наиболее часто 100 150 А/см2). Тогда выбрав тип щёток и определив допустимую для них плотность тока Jщ можно рассчитать площадь щётки:

(4.4)

С другой стороны

Sщ = ащ bщ (4.5)

где aщ  осевая ширина щётки;

bщ ширина щётки по окружности коллектора ориентировочно принимает- ся

bщ= (2  3) bк.

Выбрав стандартный размер ширины щётки bщ(ГОСТ 122322.1-77) определяют осевой размер щётки ащ удовлетворяющий необходимой площади. Осевая длина щётки также должна соответствовать указанному стандарту. После определения размеров щёток уточняют получаемую при этом плотность тока используя выражение (4.4) Величина плотности не должна превосходить допустимого значения для выбранного типа щёток.


Информация о работе «Методическое руководство по расчету машины постоянного тока (МПТ)»
Раздел: Разное
Количество знаков с пробелами: 132030
Количество таблиц: 31
Количество изображений: 123

Похожие работы

Скачать
102665
9
4

... В НГДУ «Лениногорскнефть» по охране и рациональному использованию водных ресурсов выполняются следующие мероприятия: капитальный ремонт водоводов; внедрение металлопластмассовых труб; использование ингибиторов коррозии для защиты трубопроводов (Нефтехим, Викор, Амфикор, СНПХ); метод внедрения алюминиевых и магниевых протекторов для защиты от коррозии и запорной арматуры на блоках гребенок; ...

Скачать
124563
18
0

... и по нашему мнению одним из важнейших элементов увеличения прибыльности производства продукции растениеводства является повышение эффективности использования машинно-тракторного парка предприятий. В процессе преддипломной практики нами было обследовано предприятие, располагающееся в Краснодарском крае Ленинградского района. Бывший колхоз-гигант, разделенный в последствии на несколько отдельных ...

Скачать
77490
36
18

... будет продолжена в дипломном проекте, согласно заявленной теме. Расчеты предполагается произвести с помощью программы для составления бизнес-проектов - Project Expert. Заключение По результатам анализа хозяйственной деятельности можно сделать следующие выводы. В течение периода с 2005 по 2007 г. объем производства и реализации продукции возрастал, но в 2007 г. наблюдается некоторое снижение. ...

Скачать
146267
10
17

... заявке руководителя или диспетчера дистанции сигнализации и связи дает приказ машинисту локомотива на остановку поезда для доставки к месту работы и обратно работников дистанции сигнализации и связи, направляющихся для устранения отказа. Порядок производства работ, который должен выполняться при технической эксплуатации устройств и систем ЖАТ, в том числе при устранении их отказов, для соблюдения ...

0 комментариев


Наверх