2. ИССЛЕДОВАТЕЛЬСКАЯ ЧАСТЬ


2.1. ВВЕДЕНИЕ


В данной работе проводится исследование движения центра масс МКА под действием различных возмущающих ускорений (от не­центральности гравитационного поля Земли, сопротивления атмо­сферы, притяжения Солнца и Луны, из-за давления солнечных лу­чей) и создание математической модели движения ЦМ МКА, по­зво­ляющей учесть при интегрировании уравнений движения ЦМ МКА эволюцию орбиты МКА.

В работе разрабатывается алгоритм коррекции, ликвидирующий ошибки выведения МКА и рассчитывается масса топлива, необхо­димая для проведения коррекции, необходимой из-за эволюции па­раметров орбиты и из-за ошибок выведения МКА на рабочую ор­биту.

Точность проведения коррекции зависит от точности направле­ния корректирующего импульса, заданной в ТЗ. Было проведено моде­лирование системы коррекции в режиме стабилизации угло­вого по­ложения при работе корректирующей двигательной уста­новки.

В работе приводятся программы, реализующие интегрирование уравнений движения ЦМ МКА, процесс осуществления коррекции и расчет топлива для коррекции.

2.2. КРАТКИЕ СВЕДЕНИЯ ОБ ОРБИТЕ


Основными показателями эффективности космической группировки, являются:

- предельная производительность МКА в сутки на освещенной стороне Земли не менее 400-500 объектов.

- периодичность наблюдения районов съемки не реже одного раза в сутки.

Расположение плоскости орбиты по отношению к Солнцу выбрано таким образом, чтобы угол между линией узлов и следом терминатора на плоскости экватора Земли составлял Dт = 30°. При этом северный полувиток орбиты должен проходить над освещенной частью земной поверхности. Для определенности углу Dт приписывается знак «+» в том случае, если восходящий узел орбиты находится над освещенной частью Земли, и знак «-», если ВУ находится над неосвещенной частью. При выборе баллистического построения оперируют углом D, однозначно определяющимся прямым восхождением Солнца a0 и долготой восходящего узла орбиты в абсолютном пространстве W: D = a0 - W. Соотношение между углом Dт и углом D: Dє Dт - 90°.


2.2.1. ХАРАКТЕРИСТИКА ОРБИТЫ


Для решения задач наблюдения Земли из космоса с хорошим раз­решением при жестких ограничениях на массу КА и минимизации затрат на выведение целесообразно использовать низкие круговые орбиты. В этом классе орбит выделяют солнечно-синхронные ор­биты со следующими свойствами:

- скорость прецессии плоскости орбиты в пространстве состав­ляет примерно 1° в сутки, что практически обеспечивает постоян­ство ориентации ее относительно терминатора Земли в течении всего срока активного существования КА.

- близость наклонения плоскости орбиты к полярному, что обес­печивает глобальность накрытия полюсами обзора поверхности Земли.

- возможность наблюдения районов на поверхности Земли при­мерно в одно и то же местное время при незначительном изменении углов места Солнца в точке наблюдения.

Всем этим условиям удовлетворяют солнечно-синхронные ор­биты с высотами от нескольких сот до полутора тысяч километров. На больших высотах наклонение солнечно-синхронной орбиты от­ли­чается от полярного, и глобальность накрытия поверхности Земли не обеспечивается. Для повышения эффективности наблюде­ния це­лесообразно выбрать орбиты с изомаршрутной трассой, у которых следы орбит ежесуточно проходят на одними и теми же районами Земли, что позволяет обеспечивать периодичность на­блюдения од­ного и того же объекта, как минимум, раз в сутки с одного КА.

Предварительные расчеты показали, что целесообразно исполь­зовать орбиту с высотой Н = 574 км и наклонением плоскости ор­биты к плоскости экватора Земли i = 97,6°.

Масса МКА может составить от 500 до 800 кг (что зависит от вида целевой аппаратуры, устанавливаемой на борту МКА). Для выведения МКА на орбиту используется РН СС-19 («Рокот») с разгонным блоком «Бриз».


2.2.3. СВЯЗЬ МКА С НАЗЕМНЫМИ ПУНКТАМИ УПРАВЛЕНИЯ


Управление МКА осуществляется с наземных пунктов управления на территории России. Их количество и место расположения выбирается таким образом, чтобы на любом витке можно было организовать сеанс связи с МКА хотя бы с одного пункта управления. Угол возывшения МКА над горизонтом наземного пункта управления должен быть не менее 7°, а дальность до МКА не должна превышать 2200 км.

В расчете зон связи были использованы следующие исходные данные:

- высота орбиты - 574 км.

- наклонение орбиты - 97,6°.

- географическая долгота восходящего узла первого витка - 4° в.д.

- минимальный угол возвышения МКА над местным горизонтом - 7°.

Из рассматривавшихся возможных наземных пунктов управления (Москва, Новосибирск, Хабаровск, Мурманск, Калининград, Диксон, Комсомольск-на-Амуре, Петропавловск-Камчатский), было выбрано три (Москва, Диксон, Петропавловск-Камчатский), обеспечивающие возможности связи с МКА на любом витке орбиты. При этом зоны связи с МКА составляют от 3 до 9 минут на витке.

Интергральные характеристики возможности связи с МКА:

- высота орбиты - 574 км.

- число витков, видимых из Москвы, вит/сутки - 6.

- суммарное время видимости из Москвы, мин - 41.

- суммарное время видимости с трех пунктов, мин - 153.

- максимальное время видимости одного витка, мин - 9,1.


2.2.4. ВЫВЕДЕНИЕ МКА НА РАБОЧУЮ ОРБИТУ


Выведение МКА на орбиту с наклонением i = 97,6° и высотой Н = 574 км осуществляется ракетой-носителем «Рокот» с разгонным блоком «Бриз». При выведении для каждой отделяющейся части РН (отработанная первая ступень, обтекатель, отработанная вторая ступень) существует свой район падения.

Возможные варианты старта:

1. Полигон Байконур.

Из-за отсутствия зон падения отделяющихся частей возможно сформировать опорную орбиту с наклонением i порядка 65°. Для формирования опорной орбиты с наклонением близким полярному при использовании трассы с азимутом стрельбы более 180° (направление стрельбы на юг) - первая ступень падает в районе Ашхабада, обтекатель сбрасывается на высоте Н порядка 100 км, вторая ступень падает за Аравийским полуостровом. С точки зрения энергетики, выведение осуществляется не по оптимальной схеме, в результате чего на круговую орбиту высотой Н порядка 700 км выводится МКА массой менее 600 кг.


Информация о работе «Исследование движения центра масс межпланетных космических аппаратов»
Раздел: Астрономия
Количество знаков с пробелами: 74075
Количество таблиц: 20
Количество изображений: 1

Похожие работы

Скачать
56399
1
0

... и давления от высоты, а также состав атмосферы. Советские достижения к началу 1971 года были куда скромнее американских. В 1969 году планировалось запустить два космических аппарата (КА) для исследования Марса с орбиты искусственного спутника, но они не были выведены на межпланетные траектории из-за аварии РН "Протон". Для завоевания лидерства было решено разработать проект М-71, предусмотрев ...

Скачать
57193
0
1

... , а на Земле уже готовится экспедиция на Марс с экипажем космонавтов-исследователей на борту. ОБОБЩЕНИЯ И ВЫВОДЫ Нам остается подвести сравнительные итоги результатов исследований планеты Венера до и после начала ее исследований космическими аппаратами. Итак, что узнало человечество об этой планете за 250 лет ее изучения оптической астрономией? 1.    Планета Венера занимает второе ...

Скачать
32517
2
0

... в условиях огромных температур и давления, а также в период аэродинамического торможения. Первые полеты АМС к Венере позволили выявить различия в подходе СССР и США к решению задач исследования Венеры с помощью космических аппаратов. Если специалисты США в качестве основной схемы на первом этапе выбрали схему пролета вблизи планеты, то конструкторы АМС в СССР поставили основной задачей посадку ...

Скачать
58282
0
0

... рассуждают о фатальных секторах Галактики, где существуют миниатюрные "черные дыры", рассеянные облака ядовитых газов, "пузыри" с измененными пространственными и временными характеристиками... К сожалению, на космическую защиту и исследования в этой области отсутствует достаточное финансирование, даже в цивилизованных странах. В частности, хотя американское космическое агентство NASA и способно ...

0 комментариев


Наверх