4.6. РЕКОМЕНДАЦИИ ПО СНИЖЕНИЮ УТОМЛЯЕМОСТИ
Необходимо расположить экран дисплея немного выше уровня глаз. Это создаст разгрузку тех групп окологлазных мышц, которые наиболее напряжены при обычном направлении взгляда - вниз или вперёд.
Помещение, где находятся компьютеры и видеомониторы, должно быть достаточно просторным с постоянным обновлением микроатмосферы. Минимальная площадь на один видеомонитор - 9-10 м2. Крайне нежелателен визуальный контакт работника с другими мониторами или телевизионными экранами. Необходимо исключить наличие всевозможных бликов на экране монитора, часто возникающих на стеклянных экранах. Следует также избегать большой контрастности между яркостью экрана и окружающего пространства - оптимальным считается выравнивание яркости экрана и компьютера. Запрещается работа с компьютером в тёмном или полутёмном помещении.
Вечернее освещение рабочего помещения желательно голубоватого цвета с яркостью, примерно равной яркости экрана. В условиях дневного освещения также рекомендуется обеспечить вокруг монитора голубой фон - за счёт окраски стен или хотя бы наличия плакатов.
Для большего эргономического комфорта целесообразно расположить в кресле опору - в районе поясничного изгиба позвоночника (в виде продолговатой подушечки или валика).
Если работник имеет те или иные рефракционные отклонения (близорукость, дальнозоркость и др.), то последние должны быть полностью коррегированы очками. При более серьёзных отклонениях вопрос о возможности работы с видеотерминалами должен решаться с участием врача-офтальмолога.
Через каждые 40-45 минут необходимо проводить физкультурную микропаузу: вращение глаз по часовой стрелке и обратно, лёгкие гимнастические упражнения для всего тела, например поднимание и опускание рук.
Каждый час необходимо делать перерыв и выполнять несколько упражнений на расслабление, которые могут уменьшить напряжение, накапливающиеся в мышцах при длительной работе за компьютером.
4.7. ЗАЩИТА ОТ НАПРЯЖЕНИЯ ПРИКОСНОВЕНИЯ. ЗАНУЛЕНИЕ
Занулением называется преднамеренное соединение нетоковедущих частей с нулевым защитным проводником (НЗП). Оно применяется в трехфазных сетях с глухозаземленной нейтралью в установках до 1000 вольт и является основным средством обеспечения электробезопасности.
При попадании напряжения сети на корпус ПЭВМ возникает режим короткого замыкания. Для защиты электрической сети от короткого замыкания и перегрузок применяются автоматические выключатели или предохранители. При проектировании защитного устройства необходимо рассчитать его номинальный ток срабатывания - Iном:
Ialarm і KIном, где
Iном = Ialarm/K
Iном - номинальный ток срабатывания защитного устройства, A;
K - коэффициент, учитывающий тип защитного устройства:
K = 3 - для автомата с электромагнитным расцепителем,
K = 1.4 - для теплового автомата,
Ialarm - ток короткого замыкания, A.
Рассчитаем величину тока короткого замыкания:
Ialarm = Uf/(Rn + Rm/3)
Rn = Rf + R1 + jx1
Uf = 220 В
Rm = 0,312W
Rf = 0,412W
jx1 = 0,6W
R1 = r/S
r - удельное сопротивление НЗП, [Wmm2/m];
l - длина НЗП, m;
rcu = 0,0175 W mm2 /m,
l = 50 m,
S = 1,5 mm2
R1 = 0,0175(50/15) = 0,58W
Rn = (0,412 + 0,58 + 0,6) = 1,59W
Ialarm = 130 A
Iном = 43 A
Для того, чтобы в случае короткого замыкания или других причин ПЭВМ отключалась от электрической сети необходимо в цепь питания поставить автомат с электромагнитным расцепителем с Iном = 43 A.
4.8. ПОЖАРНАЯ БЕЗОПАСНОСТЬ
В помещениях ВЦ существуют все три основные фактора, необходимые для возникновения пожара.
Горючими материалами на ВЦ являются: строительные материалы для акустической и эстетической отделки помещений, перегородки, двери, полы, изоляция силовых и сигнальных кабелей, шкафы, жидкости для очистки элементов и узлов ЭВМ и т.д.
Для отвода тепла от ЭВМ в производственных помещениях ВЦ постоянно действует система кондиционирования. Поэтому кислород, как окислитель процессов горения, имеется в любой точке помещений ВЦ.
Источниками зажигания на ВЦ могут оказаться электронные схемы ЭВМ, приборы, приборы, применяемые для технического обслуживания, устройства электропитания, кондиционеры воздуха.
По пожарной опасности ВЦ относятся к категории “В” (в производстве обращаются твердые сгораемые вещества и материалы). Исходя из этого ВЦ проектируется с II степенью огнеустойчивости.
Минимальные пределы огнеустойчивости в часах:
Cтепень огнестойкости зданий и сооружений | II |
Основные строительные конструкции: | |
Несущие стены, стены лестничных клеток, колонны | 2 |
Лестничные площадки | 1 |
Наружние стены из навесных панелей | 0,25 |
Внутренние несущие стены, перегородки | 0,25 |
Несущие конструкции междуэтажных перекрытий | 0,75 |
Плиты, настилы и др. | 0,25 |
Для обнаружения начальной стадии загорания используют систему автоматической пожарной сигнализации (АПС). АПС состоит из пожарных извещателей, линий связи и приемных пультов (станций).
В помещениях ВЦ применят дымовые пожарные извещатели типа РИД-1.
Принцип действия РИД-1 основан на изменении величины электрического тока, протекающего через ионизационную камеру, при попадании в нее дыма.
Технические показатели для РИД-1:
чувствительный элемент | ионизационная камера |
параметр срабатывания | тлеющий фитиль |
инерционность, сек | 10 |
диапазон температур, С | -30 ...+50 |
относительная влажность, % | 80 |
Норма расстановки пожарных извещателей в помещениях с гладким полом:
Тип | Защищаемая площадь, i2 | Расстояние между извещателями, м | |
максимальное | в узких коридорах | ||
РИД-1 | 100 | 12 | 15 |
Линии связи систем АПС с приемными станциями строятся по лучевому принципу. Приемные станции АПС устанавливаются в помещении дежурного по ВЦ, где организуется круглосуточное дежурство.
Приемные станции обеспечивают следующие функции:
прием сигналов от пожарных извещателей с индикацией номера луча;
непрерывный контроль состояния лучей по всей длине с автоматическим выявлением характера повреждения;
световая и звуковая сигнализация тревоги;
автоматическое переключение на резервный источник питания при сбоях сети с включением соответствующей сигнализации.
На ВЦ используется приемная станция РОУП-1.
Технические характеристики устройства РОУП-1:
извещателей РИД-1, шт | до 300 |
шлейфов блокировки, компл. | до 30 |
напряжение питания, В | 220±10 |
потребляемая мощность, Вт | не более 180 |
диапазон температур, С | +5 ... +50 |
относительная влажность, % | до 80 |
срок службы, лет | 8 |
дополнительные функции | может управлять устройствами пожаротушения |
На ВЦ применяются установки газового тушения пожара, действие которых основано на быстром заполнении помещения газом с низким содержанием кислорода. Используется автоматическая установка газового пожаротушения (АУГП) с электрическим пуском.
Технические характеристики АУГП с электрическим пуском:
число пусковых баллонов, шт | 2 |
число рабочих баллонов, шт | 4 |
заряд пускового баллона | сжатый воздух |
заряд рабочего баллона | фреон 114 Вч |
вместимость пускового баллона, л | 27 |
вместимость рабочего баллона, л | 40 |
давление в пусковом баллоне, МПа | 125 |
давление в рабочем баллоне, МПа | 12,5 |
продолжительность пуска, с | 65 |
масса батареи без заряда, кг | 480 |
При использовании АУГП для предотвращения отравления персонала предусмотрена предупредительная звуковая и световая сигнализация, срабатывающая при ручном, дистанционном и автоматическом включении за 30 секунд до начала выпуска газа.
Расчет необходимого количества баллонов с сжатым воздухом и огнегасительным средством:
Количество огнегасительного вещества (фреона)
Gт = GвWпKу, где Gт - количество огнегасительного вещества,
Wп - расчетный объем защищаемого помещения, м3,
Gв - огнегасительная концентрация газового состава, кг/м3,
Kу - коэффициент, учитывающий особенности процессов газообмена в защищаемом помещении.
Для ВЦ Gв= 0,25 кг/м3, Kу = 1,2.
Wп = SH, где S - площадь помещения, м2.
H - высота помещения, м.
S = 100 м2. H = 3 м. Wп = 300 м3.
Gт = 0,25*300*1,2 = 90 кг.
Необходимое количество баллонов
Nб = Gт/Vбra, где Vб - объем баллона, м3,
r - плотность, кг/л,
a - коэффициент наполнения баллона.
Vб = 40 л, r = 2,17 кг/л, a = 0,9.
Nб = 90/(40*2,17*0,9) = 2.
Объем воздушных баллонов
Wб = (Рсмин+1)(Wс+Wт)/(Рмакс-Рбмин), где Рсмин и Рбмин - конечное давление в воздушных баллонах и баллонах с огнегасительным средством, МПа,
Рмакс - начальное давление воздуха в баллоне, МПа,
Wс иWт - объем баллонов с огнегасительным составом и трубопроводов, л.
Рсмин = Рбмин = 5 Мпа, Wс = 2*40 = 80 л, Wт = 20л, Рмакс = 125 МПа.
Wб = (5+1)(80+20)/(125-5) = 4,8 л.
5. СПИСОК ЛИТЕРАТУРЫ.
«Основы теории полета космических аппаратов» / Под ред. Г.С.Нариманова, М.К.Тихонравова. М., Машиностроение, 1972.
А.П.Разыграев «Основы управления полетом космических аппаратов». М., Машиностроение, 1990.
Г.Г.Бебенин, Б.С.Скребишевский, Г.А.Соколов «Системы управления полетом космических аппаратов». М., Машиностроение, 1978.
К.Б.Алексеев, Г.Г.Бебенин «Управление космическими летательными аппаратами». М., Машиностроение, 1974.
В.В.Солодовников, В.Н.Плотников, К.В.Яковлев «Теория автоматического управления технических систем». М., изд.МГТУ им.Баумана, 1993.
Б.Страуструп «Язык программирования С++». М., «Радио и связь», 1991.
А.В.Бошкин, П.Н.Дубнер «Работа с С++». М., «Юкис», 1991.
В.В.Арсеньев, Б.Ю.Сажин «Методические указания к выполнению организационно-экономической части дипломных проектов по созданию программной продукции», М., изд. МГТУ им.Баумана, 1994.
ГОСТ 2.103-68 НИР. М.: Изд-во стандартов, 1968.
В.К.Зелинский «НОТ в проектно-конструкторской организации». М.: «Экономика», 1969.
«Управление трудовым коллективом» / Г.П.Зайцев, Э.В.Минько, Н.В.Артамонова и др. Свердловск, Изд-во УГУ, 1989.
«Типовые нормы времени на программирование задач для ЭВМ», утвержденные постановлением Государственного комитета СССР по труду и социальным вопросам и Секретариата ВЦСПС от 27 июля 1987 г. №454/22-70
Ю.Г.Сибиров «Охрана труда в ВЦ». М., «Машиностроение», 1985.
Сибиров Ю.Г., «Основы инженерной психологии» / под ред. Б.Ф.Ломова. М., «Машиностроение», 1986.
СНиП 2.09.04-87 «Административные и бытовые здания и помещения производственных предприятий».
«Зрение» / под ред. Н.И.Кудряшовой, М., «Машиностроение», 1995.
«Временные рекомендации труда операторов за дисплеями». ГОСТ 12.1.006-84.
СНиП2963-84 «Нормирование электромагнитных полей».
«Современные нормы электростатического и электромагнитного излучения», «Computer World» №7, 1995.3
6. ПРИЛОЖЕНИЕ. ТЕКСТЫ ПРОГРАММ ДЛЯ BORLAND C++ И MATHLAB 4.0 FOR WINDOWS
6.1. ОСНОВНОЙ ПРОГРАММНЫЙ МОДУЛЬ MAIN.CPP
#include
#include
#include
#include
#include "rk5.h"
#include "sfun.h"
#include "init.h"
#include
typedef long double real;
const float g_r = M_PI/180.;
const float r_g = 180./M_PI;
real t_beg;
real t_end;
real dt;
real toler;
int Np;
int Curp;
real dTp;
real mu_z;
real mu_s;
real mu_l;
real m;
real m_t;
real W;
real w_s;
real w_z;
real w_l;
real ww_l;
real xs,ys,zs;
real xl,yl,zl;
real Fz,Fs,Fl,Fa,U20;
real J1,J2,J3;
int nomin;
real par[8];
real parn[8];
real a_p,e_p,p_p,Om_p,i_p,om_p,Rp_p,Ra_p;
real y_main[6];
real prmt[5];
int Fl_u;
real u_last;
int Fl_ka;
int Fl_kp;
int Fl_ki;
int Fl_i;
int Fl_p;
int Fl_a;
int Fl_lu;
int Fl_pkT;
real dl;
real T_vd;
real dRa;
real dRp;
int Sig;
int Sig_a;
real Tkor;
real Tkore;
real Vkor[3];
real akor[3];
int Fl_l0;
int Fl_l1;
int Fl_pki;
real dV_ps;
real dV_as;
real dV_is;
real dV_ss;
ofstream m_y ("m_y.dat");
ofstream m_f ("m_f.dat");
ofstream m_s ("m_s.dat");
ofstream m_l ("m_l.dat");
ofstream m_par ("m_par.dat");
ofstream u_f ("u_f.dat");
ofstream u_par ("u_par.dat");
ofstream k_par ("k_par.dat");
void out_p(real,real *,real*,int,int,real*);
void main()
{
clrscr();
init_m();
real dery[]={ .167, .167, .167, .167, .166, .166};
int ihlf;
int ndim = 6;
Drkgs(prmt,y_main,dery,ndim,ihlf,fct,out_p);
clrscr();
if (ihlf
... и давления от высоты, а также состав атмосферы. Советские достижения к началу 1971 года были куда скромнее американских. В 1969 году планировалось запустить два космических аппарата (КА) для исследования Марса с орбиты искусственного спутника, но они не были выведены на межпланетные траектории из-за аварии РН "Протон". Для завоевания лидерства было решено разработать проект М-71, предусмотрев ...
... , а на Земле уже готовится экспедиция на Марс с экипажем космонавтов-исследователей на борту. ОБОБЩЕНИЯ И ВЫВОДЫ Нам остается подвести сравнительные итоги результатов исследований планеты Венера до и после начала ее исследований космическими аппаратами. Итак, что узнало человечество об этой планете за 250 лет ее изучения оптической астрономией? 1. Планета Венера занимает второе ...
... в условиях огромных температур и давления, а также в период аэродинамического торможения. Первые полеты АМС к Венере позволили выявить различия в подходе СССР и США к решению задач исследования Венеры с помощью космических аппаратов. Если специалисты США в качестве основной схемы на первом этапе выбрали схему пролета вблизи планеты, то конструкторы АМС в СССР поставили основной задачей посадку ...
... рассуждают о фатальных секторах Галактики, где существуют миниатюрные "черные дыры", рассеянные облака ядовитых газов, "пузыри" с измененными пространственными и временными характеристиками... К сожалению, на космическую защиту и исследования в этой области отсутствует достаточное финансирование, даже в цивилизованных странах. В частности, хотя американское космическое агентство NASA и способно ...
0 комментариев