8 × m®2 • т ® т®(1)®т®5 • т. ®(1).

К сожалению, филогенетическая эволюция симмет­рии по ходу отдельных ветвей древа жизни практиче­ски не изучена. Здесь явно необходимы планомерные исследования. Они могут привести к крупным откры­тиям и обобщениям.

Что касается характера изменения симметрии ор­ганизмов в их онтогенезе, то помимо данных, приве­денных выше, можно сослаться также и на интерес­нейшие результаты М.Д. Велибекова, полученные им при изучении ряда бобовых и других растений (под­солнечник, гречиха).

Он указывает, что обычно «в процессе развития состояние беспорядочной ориентации (чередования) и связи правых и левых метамеров, свойственное юве-нильному растению, заменяется константной; в даль­нейшем (чаще на уровне цветок, плод, зародыш) ориентация и связь вновь становятся неопределенными» . Иначе, в их онтогенезе статистически начальная симметризация сменяется диссимметризацией, а последняя — снова симметризацией. Одновременно ча­ще одинаковые по частоте встречаемости и другим свойствам D и L фитоформы этих растений, их низкие полярность, целостность, пространственно-временная организованность, большие полиморфичность (инфор­мационная), энтропия, евклидовость в начале развития заменяются в ходе развития на неодинаковые по свой­ствам (в том числе встречаемости) D и L фитоформы, повышенные полярность, целостность, пространствен­но-временную организованность, пониженные полиморфичность, энтропию, евклидовость. В дальнейшем, в ходе отрицания отрицания, все эти показатели как бы снова возвращаются к исходным состояниям. И вот что замечательно: «Развитие информации, энтропии, пространственных характеристик циклично и обычно следует математическим закономерностям ряда золо­того сечения».

Разумеется, отмеченные М. Д. Велибековым зако­номерности применимы не ко всем растениям, даже не ко всем бобовым. Возможно, в будущем будут точ­нее описаны и сами эти закономерности. Но при всем этом нельзя не отметить огромной ценности самого подхода, выдвинутых им характеристик, полученных данных, новизны развиваемого им направления в бносимметрике.

В итоге мы видим, что на морфологическом уров­не: 1) величина симметрии организмов в ходе эволю­ции жизни закономерно в тенденции падает, образуя многоветвистые эволюционные ряды симметрии; и) на низших ступенях организмы представлены множест­вом видов симметрии. При этом их число много боль­ше 32 — числа видов симметрии кристаллов. Однако к вершинам эволюционного древа число видов сим­метрии резко уменьшается, возникают многократно асимметризованные формы; 3) как и на уровне цеп­ных молекул, появляются макробиоформы с запрещенными для кристаллов осями симметрии порядка 5, 7, 8, 9... Однако вопреки широко известному взгляду пятерная ось получает большое распространение не на всех, а лишь на определенных ступенях разви­тия живого, как и двусторонняя симметрия т; 4) как в онто-, так и в филогенезе имеют место переходы ти­па диссимметризация « симметризация, причем про­цесс в целом сильно сдвинут в сторону диссимметриза-ции. Таким образом, и на макроуровне биологическая симметрия обнаруживает ряд специфических черт, что с новых сторон подтверждает положение В. И. Вернад­ского о специфическом характере биологического про­странства.

Приведенные факты показывают, что воззрения на природу, построенные с позиций только одной из рас­смотренных противоположностей, односторонни и в конечном счете неверны. Мир есть в рассматриваемом аспекте, насколько мы можем судить о нем с поправ­кой на сегодняшний уровень знаний, единство взаимо­исключающих, обусловливающих, дополняющих, бо­рющихся, переходящих друг в друга противоположно­стей, созидающих и одновременно нарушающих сим­метрию.

 

2.3.3. БИОСИММЕТРИЯ СТРУКТУРНАЯ — НЕКЛАССИЧЕСКАЯ

Приведенные в двух предыдущих параграфах дан­ные позволяют сделать еще одно утверждение: на биообъектах реализована классическая симметрия аб­солютно всех размерностей — точечная, линейная, плоская, пространственная. Однако не только класси­ческая. Хотя биосимметрия с точки зрения различных неклассических теорий симметрии не изучена, ниже мы укажем по крайней мере на отдельные примеры реализации в живой природе главнейших из откры­тых в последние 50 лет симметрии.

Просто и l-кратно антисимметричны все те орга­низмы и их части, которые обладают l+1=n дисс-факторами. Таковы, например, диссимметрические корни, стебли, листья, побеги, чашечки, венчики, цвет­ки многих растений; внутреннее строение животных, множество оптически активных биологических соеди­нений — Сахаров, аминокислот, белков, нуклеиновых кислот и т.д. Еще один конкретный пример, антисим­метрии можно найти в работе Маизенхаймера, Нормана и Штербе. Они сообщают о существовании у некоторых рыб, например анаблепс, двух половых рас. Одна половая раса состоит из D самцов и L самок; другая, напротив, из L самцов и D самок. Оплодотворение оказалось возможным только в пределах своей I половой расы и невозможным между L самцами и L самками, а также D самцами и D самками.

С точки зрения учения о симметрии составляющие эти расы особи равны, симметричны (в известном при­ближении) друг другу в нескольких смыслах. Для бо­лее четкого их выявления примем только следующие обозначения: левое и правое по-прежнему будем обо­значать буквами L и D, женский и мужской пол — знаками «+» и «—». Тогда мы придем к следующим равенствам: 1) совместимому (между особями L+ и L+,L— и L—, D+ и D+, D— и D —), 2) зеркально­му (между особями L+ и D+, L— и D—); 3) совме­стимому антиравенству (между особями L— и L+, D— и D+); 4) зеркальному антиравенству (между особями L+ и D—, L— и D+)- Других случаев не существует. Заметим, что первые два равенства охва­тываются классической теорией симметрии, а все че­тыре — теорией антисимметрии.

Цветную симметрию выявляют биокристаллы, по­беги растений с изменяющимися по ходу стебля фор­мами листьев, венчики цветков растений с морфологи­чески различными лепестками и вообще все такие биообразования, качества которых могут принимать три и более различных состояний одной природы.

Симметрия подобия реализуется на биообъектах при их подобном росте и воспроизведении; она пре­красно видна на головках подсолнечника, раковинах некоторых моллюсков, верхней части побегов ряда ра­стений.

Гомологическую, или аффинную, симметрию выяв­ляют динамическая симметрия биокристаллов, неко­торые так называемые аффинно уродливые орга­низмы.

Криволинейную симметрию обнаруживают кроме рядов развития раковин брахиопод и цефалопод искривленные побеги стебли, корни, листья растений. Рассмотрим один из примеров подробнее. Нередко можно наблюдать, как билатерально-симметричные S-листья-(первого яруса) фасоли по мере роста ис­кривляются, приобретая L или D конфигурацию. Мы экспериментально показали, (неопубликованные данные), что превращение S-листьев в L или D вызвано повышением содержания в меньших половинках L и D листьев ингибиторов (в частности, фенольной при­роды) и понижением содержания активаторов роста (типа ауксинов) и, наоборот, с повышением содержа­ния в больших половинках этих листьев активаторов и понижением содержания ингибиторов роста. С этой картиной хорошо коррелировала и активность соот­ветствующих ферментов и их ингибиторов. В резуль­тате, уже искусственно изменяя содержание ингибито­ров или активаторов роста, например нанося их (пос­ле выделения из листьев) на те или иные половинки листа, нам удалось вызвать все мыслимые превраще­ния форм листьев друг в друга.

Приведенные факты интересны с трех точек зре­ния.

Во-первых, с ботанической. Любой ботаник сказал бы, что S-лист симметричен, а L и D — асимметрич­ны. И это было бы так с точки зрения классического учения о симметрии и совершенно несправедливо с точки зрения учения о криволинейной симметрии. Действительно, после превращения из-за неравномер­ного роста половинок S-листа в L или D бывшая у S-листьев прямая плоскость симметрии не исчезает бесследно, а превращается в криволинейную плос­кость отражения. В результате, как и S-листья, L и D листья также по-своему зеркально-симметричны:

под действием отражения в сферическом зеркале у каждого из них меньшая половинка становится большей, большая — меньшей, а лист в целом самосовме­щается.

Во-вторых, эти факты интересны "с точки зрения теории симметрии. Вплоть до последнего времени тео­ретики считают, что наличие в объекте зеркальных элементов исключает какую бы то ни было возмож­ность быть этому объекту L или D. Действительно, на­личие зеркальной плоскости исключает способность S-листа быть L или D, но не мешает быть L или D искривленным листьям! И это, конечно, не случайно:у S-листа зеркальная плоскость прямолинейная, со­храняющая при отражениях расстояния между соот­ветственными точками половинок, а у L и D листьев эта плоскость криволинейная, при отражениях не со­храняющая расстояний между соответственными точ­ками половинок, «делая» их L или D. Разумеется, ска­занное верно не только по отношению к листьям, но н по отношению к любым аналогичным объектам (на­пример, к искривленным кристаллам кварца и серы). Таким образом, ограниченно справедливым оказы­вается одно из самых, казалось бы, незыблемых утверждений теории структурной симметрии.

В-третьнх, эти факты интересны с точки зрения метода кристаллохимического анализа Е. С. Федо­рова, позволяющего по величине углов между граня­ми кристалла предсказывать с определенной вероят­ностью вещества, его слагающие. Приведенные выше биологические факты с S, L, D листьями интересны тем, что они указывают на явную возможность рас­ширения границ федоровского метода, распростране­ния его на биологические образооания. Можно и по их форме судить с определенной вероятностью о биофизикохимнческих и физиологических их особенностях (и наоборот). В данном случае это выразилось в том, что мы: 1) констатировали возникновение из S-листьев искривленных L и D с неравными половинками;

2) возложили «ответственность» за правизну и левиз­ну, а также неодинаковость половинок на регуляторы роста, их ферментные системы и ингибиторы; 3) в со­ответствии с истинной симметрией форм S, L, D листь­ев построили гипотезу о пространственном распреде­лении регуляторов роста, ферментов, ингибиторов, ожидая вполне определенные с точки зрения законо­мерностей форм S, L, D листьев результаты; 4) подтвердили гипотезу биохимическими анализами;

5) зная эти закономерности, по строгому плану изме­нили формы одних листьев в формы других.

В заключение отметим: мы не думаем, чтобы тео­ретико-групповое изучение биообъектов свелось к фор­мулировке получаемых результатов на языке только уже известных теорий симметрии. Дело в том, что так или иначе выявление видов симметрии конкретных биообъектов связывается с выявлением способов упа­ковки тех или иных компонентов в эти биообъекты. Часть из них удавалось и наверняка удастся расшиф­ровать на основе стандартных экспериментальных ме­тодов и методов уже известных теорий структурной симметрии. Однако для расшифровки другой части биоупаковок рамки существующих теорий структур­ной симметрии придется существенно расширить хотя бы для математического анализа и вывода всех воз­можных способов заполнения пространств без и (или) с промежутками, нежесткими и (или) жесткими, ра­стущими и (или) нерастущими, часто неправильной конфигурации выпуклыми и (или) вогнутыми компо­нентами. Для лучшего уяснения этой идеи полезно сравнить способы заполнения пространства в блоках кирпичами со способами заполнения пространства в апельсинах сочными ячейками. Понятно, что выявле­ние видов биологических упаковок поможет глубже понять сущность жизни. С другой стороны, оно может буквально революционизировать производство тары и упаковок, производство, без которого, как известно, не обходится ни одна отрасль народного хозяйства.

 

 

 


Информация о работе «Проявление симметрии в различных формах материи»
Раздел: Естествознание
Количество знаков с пробелами: 90168
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
12098
2
6

l  Какие виды симметрий, встречаются в природе; l  Как применяет красоту симметрии в своих творениях человек? Поэтому тему своего исследования я назвала «Симметрия — символ красоты, гармонии и совершенства».   §2. Что такое симметрия? Ее виды в геометрии. О, симметрия! Гимн тебе пою! Тебя повсюду в мире узнаю. Ты в Эйфелевой башне, в малой мошке, Ты в елочке, что у лесной дорожки. С ...

Скачать
64675
4
6

... к старинным геохимическим циклам планеты). Осуществление завершающего звена, по В.И. Вернадскому, должно быть итогом переработки отходов и вышедшей из употребления продукции автотрофными, так как высшие формы живой материи - гетеротрофные - способны усваивать без ущерба для себя лишь химически чистые, однородные элементы. Хлорофильные растения и окисляющие бактерии должны поэтому выполнить роль " ...

Скачать
53262
0
4

... требуется оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля. Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - ...

Скачать
38709
0
0

... по-видимому, прибавлялась только как искусственная роскошь к довольно узкому готовому миру вещей с их свойствами и силовыми взаимодействиями, их движениями и изменениями». Об определении категорий симметрии и асимметрии В настоящее время в науке преобладают определения указанных категорий на основе перечисления их важнейших признаков. Например, симметрия определяется как совокупность ...

0 комментариев


Наверх