3. ОБЩАЯ ПОСТАНОВКА ЗАДАЧИ

ИССЛЕДОВАНИЯ ОПЕРАЦИИ. ДЕТЕРМИНИРОВАННЫЙ СЛУЧАЙ

Рассмотрим задачу исследования операций в общей постановке, безотносительно к виду и цели операции.

Пусть имеется некоторая операция 0, т. е. управляемое меро­приятие, на исход которого мы можем в какой-то мере влиять, выбирая тем или другим способом зависящие от нас параметры. Эффективность операции характеризуется каким-то численным критерием или пока­зателем W, который требуется обратить в максимум (случай, когда его требуется обратить в минимум, сводится к предыдущему и отдельно не рассматривается).

Предположим, что тем или иным способом математическая модель операции построена; она позволяет вычислить показатель эффектив­ности W при любом принятом решении, для любой совокупности условий, в которых выполняется операция.

Рассмотрим сначала наиболее простой случай: все факторы, от которых зависит успех операции, делятся на две группы:

— заданные, заранее известные факторы (условия проведения опе­рации) а1, а2..., на которые мы влиять не можем;

— зависящие от нас факторы (элементы решения) х1, х2, ..., которые мы, в известных пределах, можем выбирать по своему усмотрению.

Этот случай, в котором факторы, влияющие на исход операции, либо заранее известны, либо зависят от нас, мы будем называть детерминированным.

Заметим, что под «заданными условиями» операции а1,а2 ... мо­гут пониматься не только обычные числа, но и функции, в частности— ограничения, наложенные на элементы решения. Равным об­разом, элементы решения х1, х2, ... также могут быть не только числа­ми, но и функциями.

Показатель эффективности W зависит от обеих групп факторов:

как от заданных условий, так и от элементов решения. Запишем эту зависимость в виде общей символической формулы:

W=W(a1, а2,... х1, х2,...). (3.1)

Так как математическая модель построена, будем считать, что за­висимость (3.1) нам известна, и для любых а1, а2 ...; х1, х2, ... мы мо­жем найти W.

Тогда задачу исследования операций можно математически сфор­мулировать так:

При заданных условиях а1, а2, ... найти такие элементы решения х1, х2, ..., которые обращают показатель W в максимум.

Перед нами — типично математическая задача, относящаяся к классу так называемых вариационных задач. Методы решения таких задач подробно разработаны в математике. Простейшие из этих методов («задачи на максимум и минимум») хорошо известны каждому инженеру. Для нахождения максимума или минимума (коро­че, экстремума) функции нужно продифференцировать ее по аргу­менту (или аргументам, если их несколько), приравнять производные нулю и решить полученную систему уравнений.

Однако, этот простой метод в задачах исследования операций имеет ограниченное применение. Причин этому несколько.

1. Когда аргументов х1, х2, ... много (а это типично для задач ис­следования операций), совместное решение системы уравнений, полу­ченных дифференцированием основной зависимости, зачастую оказы­вается не проще, а сложнее, чем непосредственный поиск экстремума.

2. В случае, когда на элементы решения х1, х2, ... наложены огра­ничения (т. е., область их изменения ограничена), часто экстремум на­блюдается не в точке, где производные обращаются в нуль, а на границе области возможных решений. Возникает специфическая для исследования операций математическая задача «поиска экстре­мума при наличии ограничений», не укладывающаяся в схему класси­ческих вариационных методов.

3. Наконец, производных, о которых идет речь, может вовсе не существовать, например, если аргументы х1, х2, ... изменяются не не­прерывно, а дискретно, или же сама функция W имеет особенности.

Общих математических методов нахождения экстремумов функций любого вида при наличии произвольных ограничений не существует. Однако для случаев, когда функция и ограничения обладают опреде­ленными свойствами, современная математика предлагает ряд Спе­циальных методов. Например, если показатель эффективности W зави­сит от элементов решения х1, х2, ... линейной ограничения, на­ложенные на х1, х2, ..., также имеют вид линейных равенств (или неравенств), максимум функции W находится с помощью специального аппарата, так называемого линейного программирова­ния. Если эти функции обладают другими свойствами (на­пример, выпуклы или квадратичны), применяется аппарат «выпуклого» или «квадратичного» программирования, более сложный по сравне­нию с линейным программированием, но все же позволяющий в прием­лемые сроки найти решение. Если операция естественным образом расчленяется на ряд «шагов» или «этапов» (например, хозяйственных лет), а показатель эффективности W выражается в виде суммы показа­телей Wi, достигнутых за отдельные этапы, для нахождения решения, обеспечивающего максимальную эффективность, может быть применен метод динамического программирования.

Если операция описывается обыкновенными дифференциальными уравнениями, а управление, меняющееся со временем, представляет собой некоторую функцию x(f), то для нахождения оптимального уп­равления может оказаться полезным специально разработанный метод Л. С. Понтрягина.

Таким образом, в рассматриваемом детерминированном случае задача отыскания оптимального решения сводится к математической задаче отыскания экстремума функции W; эта задача может быть весь­ма сложной (особенно при многих аргументах), но, в конце концов, является вычислительной задачей, которую, особенно при наличии быстродействующих ЭЦВМ, удается, так или иначе, решить до конца. Трудности, возникающие при этом, являются расчетными, а не прин­ципиальными.


Информация о работе «Системный анализ и проблемы принятия решений»
Раздел: Кибернетика
Количество знаков с пробелами: 41109
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
40981
3
1

... затрат ресурсов по каждому из вариантов, степени чувствительности модели к различным нежелательным внешним воздействиям. 3. Практическая часть. Разработка управленческого решения создания службы управления персоналом в соответствии с технологией применения системного анализа к решению сложных задач   I. Общая информация: 1. ООО "Компьюсервис" 2. Дата создания 01.07. 2005г 3. Московская ...

Скачать
71710
1
1

... противоположные подходы, но нельзя считать ни один из них "юридически законным" или вытекающим из каких ни будь законов природы, нельзя считать стиль управления системой на основе системного анализа "правильным", "современным", "куль-турным". Другое дело — не знать о возможности применения системного подхода к вопросам управления — вот это неправильно, некультурно. Пример системного подхода ...

Скачать
143289
39
5

... , динамические и статические, простые и сложные, естественные и искусственные, с управлением и без управления, непрерывные и дискретные, детерминированные и стохастические, открытые и замкнутые. Основы системного анализа Деление систем на физические и абстрактные позволяет раз­личать реальные системы (объекты, явления, процессы) и систе­мы, являющиеся определенными отображениями (моделями) ре­ ...

Скачать
158381
0
0

... Вашего «внутреннего решения»). На данном этапе нам уже достаточно информации, чтобы проанализировать последствия игнорирования организации основного процесса предприятия с точки зрения системного подхода. На примере неорганизованного процесса маркетинга мы видим «распыление» по подразделениям предприятия его функций — закупок, рекламы, сбыта… И дело здесь не только в потере согласованности или ...

0 комментариев


Наверх