2.3. Электронный микроскоп


При исследовании микрообъектов бывает очень важно выяснить их морфологические характеристики, и для этого используют данные, полученные с помощью растрового электронного микроскопа.

Известно, что пучок электронов, также как и поток света, в одних случаях проявляет свойства дискретных частиц, а в других – волновые свойства. Эти особенности лежат в основе получения изображения с помощью электронного микроскопа. Длина волны электронного пучка, который перемещается под действием электрических и магнитных полей, зависит только от энергии электронов. Чем выше эта энергия, тем меньше длина волны. У электронов, ускоряемых полем с напряжением 60 000 В, длина волны составляет 0,005 нм. Как и световые оптические приборы, электронные микроскопы позволяют «видеть» (т.е. разрешать) объекты, находящиеся друг от друга на расстоянии порядка половины длины волны. Однако на практике трудноустраняемые дефекты электронных микроскопов ограничивают предельное разрешение: разрешаются точки, отстоящие друг от друга на расстояние в несколько десятых нанометра. Это почти в 1000 раз лучше предельного разрешения оптического микроскопа.

В электронном микроскопе (рис.5) источником электронов служит раскаленная вольфрамовая спираль. Испускаемые электроны ускоряются в электрическом поле при наложении напряжения в несколько десятков тысяч вольт. Роль, которую в световом оптическом микроскопе играют оптические линзы, у электронных микроскопов выполняют электростатические или магнитные поля. И в оптическом, и в электронном микроскопе изображение формируется в соответствии с законами геометрической оптики, однако в отличие от светового излучения, распространяющегося прямолинейно, пучок электронов перемещается в поле по спирали. Траектория движения электрона резко изменится, если на своем пути эта частица столкнется с газообразными атомами и молекулами. Поэтому, прежде чем начинать работу, надо добиться, чтобы пространство внутри микроскопа не содержало ни воздуха, ни других газов. С этой целью в микроскопе создается разрежение (давление < 10-2 – 10 -3 Па), и в дальнейшем вся работа ведется в условиях так называемого глубокого вакуума.

Электронно-микроскопическое изображение создается потоком электронов, невидимых для человеческого глаза, и поэтому его нельзя воспринимать визуально. Чтобы полученное изображение сделать видимым для глаза, пучок электронов подают на специальные экраны, покрытые светящимися составами.

Особенности строения поверхности различных объектов чаще всего исследуют с помощью растрового электронного микроскопа. В этом микроскопе на объект подается очень тонкий пучок электронов. Такой пучок с помощью специальных полей отклоняется, последовательно («по строчкам») «обегает» все точки объекта и формирует изображение поверхности. Однако изображение создается не электронным пучком, который падает на образец, а так называемыми вторичными электронами; последние выбираются из образца электронным «лучом», улавливаются приемником-коллектором и преобразуются в электрический сигнал, который затем усиливается и используется для создания изображения уже на экране.

По сравнению с оптическим растровый электронный микроскоп отличается не только более высокой разрешающей способностью, но и значительно лучшей глубиной резкости. Предположим, например, что на какой-то поверхности отдельные детали вполне различимы при 500-кратном увеличении. Если эта поверхность совершенно ровная, ее можно исследовать с помощью светового микроскопа, который дает большие увеличения. Однако если на поверхности имеются неровности, необходимо использовать электронный микроскоп, потому что при 500-кратном увеличении в световом микроскопе рельеф поверхности достаточно четко прослеживается на глубину лишь 1-2 мкм от плоскости поверхности. Поэтому, наблюдая поверхность обрывков первичных волокон с сечением 20-30 мкм в оптическом микроскопе, можно различить только наиболее крупные детали, а многие особенности морфологии останутся неразличимыми. В электронном микроскопе мы увидим очень четкое объемное изображение такого волокна, и его поперечный срез можно исследовать очень подробно.


2.4. Основные физические методы, используемые для выявления плохо

видимых и невидимых следов


Основой выделения таких следов является усиление контраста между следом и фоном предмета-носителя, на котором расположен след. Усиливаемый контраст бывает яркостным и цветовым. Первый относится к усилению яркости беспигментных следов, второй – к усилению цветоразличения, т.е. к делению объектов одного цвета, но разной степени насыщенности или двух цветов, один из которых маскирует другой. Разновидностью яркостного контраста является теневой. Он возникает за счет такого освещения рельефного объекта, при котором возвышающиеся детали рельефа отбрасывают тени на соседние участки, благодаря чему становятся отчетливо различимыми. Так, неглубокие вдавленности (0,1-0,2 мм) можно обнаружить при освещении объекта боковым косопадающим светом.

Усилением теневого контраста широко пользуются при работе со всеми рельефными (объемными) следами в трасологии, судебной баллистике. Особое внимание при идентификации таким следам уделяют тому, чтобы и исследуемый, и экспериментальный следы были освещены одинаковым образом. За счет усиления яркостного контраста могут быть обнаружены и поверхностные следы. Так, в косопадающем свете удается выявить следы, являющиеся блестящими по отношению к поверхности. Неокрашенные следы, отличающиеся от фона только структурной поверхностью (след резиновой обуви на паркете) или оптическими свойствами вещества (потожировые следы папиллярных узоров), нередко удается обнаружить, усилив яркостный контраст следа и фона за счет освещения. На фоне блестящей поверхности следы могут казаться матовыми (темными). Происходит это за счет поглощения следом части лучей света или их рассеивания. На прозрачных предметах следы обнаруживают в косонаправленном проходящем свете.

Как мы видим, все эти приемы основаны на законах отражения известных из раздела оптики.

Для усиления цветового контраста используют методы цветоделения: подбирают светофильтры и чувствительные к определенным зонам фотоматериалы, обеспечивающие четкое изображение следов на предмете. Подбор светофильтров осуществляется либо эмпирически (методом проб и ошибок), либо расчетно-теоретическим путем, с предварительным фотометрированием объектов.

Если следы отражают или поглощают невидимые ультрафиолетовые или инфракрасные лучи, то для их обнаружения используют электронно-оптические преобразователи (отпечаток окровавленной поверхности орудия преступления на одежде жертвы) или ультрафиолетовые осветители.

Если вещество следа может содержать радиоактивные изотопы, то для его обнаружения прибегают к методам радиографии. При выявлении следов давления на металле, которые в последствии были сглажены (перебитые номера), применяют электролитические методы или проявляют следы в магнитном поле с помощью специальных суспензий. При расположении следов на внутренних частях металлических устройств (следы взлома в замке, следы внутри оружия) для обнаружения следов нарушения частей механизмов используют рентгенографию и гаммаграфию.



Информация о работе «Применение физики в криминалистических исследованиях»
Раздел: Криминалистика
Количество знаков с пробелами: 52049
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
125752
0
12

... целого документа по его частям; определение материалов письма или печати (например, выполнена ли запись пастой, содержащейся в конкретном стержне авторучки) и др. В технико-криминалистическом исследовании документов широко применяются различные устройства, основанные на использовании невидимых лучей электромагнитного спектра, светофильтры, рентгеновские приборы и радиоактивные индикаторы, а ...

Скачать
83057
0
2

... . Количество и масштаб изображения фотоснимков определяет эксперт в каждом конкретном случае в соответствии с результатами исследования. 2. Экспериментальная часть   2.1 Криминалистическое исследование паспортов транспортных средств и простых векселей Исследование документов, имеющих специальные средства защиты, в нашем случае простых векселей и паспортов транспортных средств – один из ...

Скачать
77376
0
0

... ) принадлежности объектов по оставленным следам; * идентификация объектов по их следам и разделенным частям; * выявление механизма образования следов. Задачи трасологии, как отрасли криминалистической техники, шире ее целей и они следующие: * разработка теоретических основ использования трасологических следов в расследовании преступлений; * разработка научно - технических средств и методов ...

Скачать
37441
0
0

... средства. Дальнейшая углубленная разработка и совершенствование научно-технических методов криминалистической профилактики - актуальная задача криминалистики. Глава III. Важнейшие методы технико-криминалистического исследования   Исследования в невидимых лучах. Невооруженный глаз воспринимает лучи оптического спектра, лежащие в интервале длин волн от 400 до 750 нм. Инфракрасные, ...

0 комментариев


Наверх