1.ВВЕДЕНИЕ
2.ОСНОВНЫЕ ПОНЯТИЯ
2.1.ЗАПИСЬ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ
В СТАНДАРТНОЙ И ОПЕРАТОРНОЙ ФОРМЕ
В теории автоматического регулирования в настоящее время принято записывать дифференциальные уравнения в двух формах.
Первая форма записи. Дифференциальные уравнения записываются так, чтобы выходная величина и ее производные находились в левой части уравнения, а входная величина и все остальные члены - в правой части. Кроме того, принято, чтобы, сама выходная величина находилась в уравнении с коэффициентом единица. Такое уравнение имеет вид:
= (1)
При такой записи коэффициенты k,k1,...,kn называют коэффициентами передачи, а T1,...,Tn - постоянными времени данного звена.
Коэффициент передачи показывает отношение выходной величины звена к входной в установившемся режиме, т.е. определяет собой наклон линейной статической характеристики звена.
Размерности коэффициентов передачи определяются как
размерность k = размерность y(t) : размерность g(t)
размерность k1 = размерность y(t) : размерность g(t) (?)
Постоянными времени T1,...,Tn имеют размерность времени.
Вторая форма записи. Считая условно оператор дифференцирования p= алгебраической величиной, произведем замену в уравнении (1):
=
= (2)
2.2. ПЕРЕДАТОЧНАЯ ФУНКЦИЯ ЗВЕНА
Решим уравнение (2) относительно выходной величины y(t):
y(t)==
==
=W1(s)+W2(s)+...+Wn(s)
Здесь W1(s),W2(s),...,Wn(s) - передаточные функции.
При записи уравнений с изображениями выходной и входной величин по Лапласу передаточные функции сливаются в одну.
2.3. ВРЕМЕННЫЕ ХАРАКТЕРИСТИКИ ЗВЕНА
Динамические свойства звена могут быть определены по его переходной функции и функции веса.
Переходная функция h(t) представляет собой переходный процесс на выходе из звена, возникающий при подаче на его вход единичного ступенчатого воздействия - скачкообразного воздействия со скачком, равной единице.
Функция веса w(t) представляет собой реакцию на единичную импульсную функцию. Она может быть получена дифференцированием по времени переходной функции:
w(t)=
2.4.ЧАСТОТНАЯ ПЕРЕДАТОЧНАЯ ФУНКЦИЯ И ЧАСТОТНЫЕ
ХАРАКТЕРИСТИКИ
Важнейшей характкристикой динамического звена является его частотная передаточная функция. Ее можно получить с помощью передаточной фкнкции, заменив линейный оператор s на комплексный jw.
Так как передаточная функция есть отношение изображения по Лапласу выходной величины к входной, то при переходе от изображения Лапласа к изображению Фурье, мы получим, что частотная передаточная функция является изображением Фурье функции веса, то есть имеет место интегральное преобразование
W(j)=.
Частотная передаточная функция может быть представлена в следующем виде:
W(jw)=U(w)+jV(w)
где U(w) и V(w) - вещественная и мнимая части.
W(jw)=A(w),
где A(w) - модуль частотной передаточной функции, равный отношению амплитуде выходнгой величины к амплитуде входной,j(w) - аргументчастотной передаточной функции, равный сдвигу фаз выходной величины по отношению к входной.
Для наглядного представления частотных свойств звена используются так называемые частотные характеристики.
Амплитудная частотная характеристика (АЧХ) показывает, как пропускает звено сигнал различой частоты. Оценка пропускания делается по отношению амплитуд выходной и входной величин. То есть АЧХ - это модуль частотной передаточной функции:
A(w)=ЅW(jw)Ѕ
АЧХ строят для всео диапазона частот -Ґ0. Функция веса - также экспонента, но со скачком в точке t=0 на величину.
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
W(jw)==j=U(w)+jV(w)
U(w)=
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)== (8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=arctgk - arctg
j(w)=-arctg(-Tw) (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=20lg
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
k=2
T=0.62
A(w)=
j(w)=-arctg(-0.62w)
L(w)=20lg
U(w)=
V(w)=
4.1.5. АПЕРИОДИЧЕСКОЕ ЗВЕНО 2-го ПОРЯДКА
1. Данное звено описывается следующим уравнением:
a2+a1 +aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a2=0,588
a1=50,4
ao=120
bo=312
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
++y(t)=g(t)
+T1 +y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1=,T22=-постоянные времени.
Если корни характеристического уравнения для дифференциального уравнения 2-го порядка вещественны (это выполняется при T1>2T2), то оно является апериодическим 2-го порядка. Проверим это для нашего уравнения:
T1=0,42
2T2=0,14
0,42>014, следовательно, данное уравнение - апериодическое.
Запишем исходное уравнение в операторной форме, используя подстановку p= .Получим:
(p2+T1 p+1)y(t)=kg(t) (3)
2. Получим передаточную функцию для колебательного звена. Воспользуемся преобразованиями Лапласа:
y(t) = Y(s)
=sY(s)
=s2Y(s)
g(t)=G(s)
По определению передаточная функция находится как отношение выходного сигнала к входному. Тогда уравнение (2) будет иметь вид:
s2Y(s)+T1 sY(s)+Y(s)=kG(s)
W(s)= (4)
3. Найдем выражения для переходной функции и функции веса. По определению аналитическим выражением переходной функции является решение уравнения (2) при нулевых начальных условиях, т.е. g(t)=1 или по преобразованиями Лапласа
h(t)=H(s)
H(s)=W(s)== , где
T3,4=
Разложив на элементарные дроби правую часть этого выражения, получим
H(s)=
=
Переходя к оригиналу, получим
h(t)=kЧ1(t) =
=k Ч1(t)(5)
Функцию веса можно получить дифференцированием переходной функции
w(t)=
или из преобразований Лапласа
w(t)=w(s)
w(s)=W(s)Ч1==
Разложив на элементарные дроби правую часть этого выражения, получим
w(s)=
=
Переходя к оригиналу, получим
w(t)= =
= (6)
4. Построим графики переходной функции и функции веса. Подставляя исходные данные, вычислим коэффициент передачи, постоянные времени и временные характеристики:
5. Получим частотную передаточную функцию, заменив в передаточной функции (4) s на jw:
W(s)=
W(jw)= (7)
Выделим вещественную и мнимую части :
W(jw) ==
U(w)=
V(w)=
6. Получим аналитические выражения для частотных характеристик. По определению амплитудная частотная характеристика (АЧХ) - это модуль частотной передаточной функции, т.е.
A(w)=ЅW(jw)Ѕ
A(w)==..............(8)
Фазовая частотная характеристика (ФЧХ) - это аргумент частотной передаточной функции, т.е.
j(w)=argW(jw)
j(w)=................
j(w)=............... (9)
Для построения логарифмических частотных характеристик вычислим
L(w)=20lg A(w)
L(w)=...................
7. Построим графики частотных характеристик. Для этого сначала получим их численные значения.
4.1.6. КОЛЕБАТЕЛЬНОЕ (УСТОЙЧИВОЕ) ЗВЕНО
1. Данное звено описывается следующим уравнением:
a2+a1 +aoy(t) =bog(t) (1)
Коэффициенты имеют следующие значения:
a2=0,588
a1=0,504
ao=12
bo=31,20
Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao:
++y(t)=g(t)
+T1 +y(t)=kg(t) (2),
где k=-коэффициент передачи,
T1=,T22=-постоянные времени.
Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1
Похожие работы
... основанные на применении производных высших порядков До сих пор для численного интегрирования дифференциального уравнения первого порядка (1) с начальным условием (2) мы применяли формулы, в которых явно используется лишь первая производная искомого решения. Однако если использовать формулы, явно содержащие производные высших порядков от ...
... bo=31,20 Запишем это уравнение в стандартной форме. Для этого разделим (1) на ao: - +y(t)=g(t) -T1 +y(t)=kg(t) (2), где k=-коэффициент передачи, T1=,T22=-постоянные времени. Если корни характеристического уравнения для дифференциального уравнения 2-го порядка комплексные (это выполняется при T1<2T2), то оно является колебательным. Проверим это для нашего уравнения: T1=0,042 2T2=0,14 ...
... которых ; уровень В - ; уровень А - . Совмещая результаты проверок быстроты усвоения и активности мышления с результатами теста, выявляем окончательное дифференцирование учащихся. 2.2 Методика развития математического мышления учащихся на основе дифференцированного обучения А теперь рассмотрим непосредственно методику дифференцированной работы на уроке. Класс разделен на три группы А, В, ...
... на качественно новую ступень овладения содержанием школьной математики. Глава II. Методико - педагогические основы использования самостоятельной работы, как средство обучения решению уравнений в 5 - 9 классах. § 1. Организация самостоятельной работы при обучения решению уравнений в 5 - 9 классах. При традиционном способе преподавания учитель часто ставит ученика в положение объекта ...
0 комментариев