Контрольная по теории вероятности

4561
знак
2
таблицы
2
изображения

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ВОРОНЕЖСКИЙ ИНСТИТУТ ВЫСОКИХ ТЕХНОЛОГИЙ

Факультет заочного и послевузовского обучения КОНТРОЛЬНАЯ РАБОТА №1

По дисциплине: "Теория вероятностей и элементы математической статистики"

Воронеж 2004 г.


Вариант – 9.

 

Задача № 1.

№№ 1-20. Техническое устройство, состоящее из трех узлов, работало в течение некоторого времени t. За это время первый узел оказывается неисправным с вероятностью р1, второй – с вероятностью р2, третий – с вероятностью р3. Найти вероятность того, что за время работы: а) все узлы оставались исправными; б) все узлы вышли из строя; в) только один узел стал неисправным; г) хотя бы один узел стал неисправным (см. исходные данные в таблице).

p­­1=0,4 p2=0,6 p3=0,9

 

Решение:

Пусть событие А означает, что первый узел оказался неисправным, В оказался неисправным второй узел и С – оказался неисправным третий узел, тогда  - первый узел был исправен в промежуток времени t,  - был исправен второй узел,  - был исправен третий узел.

а) Пусть событие D означает, что все узлы оставались исправными, тогда . Поэтому , учитывая независимость событий ,  и , по теореме умножения вероятностей имеем:

б) Пусть событие Е – все узлы вышли из строя, тогда:

в) Пусть событие F – только один узел стал неисправным, тогда:

События  несовместные. Поэтому, применяя теорему сложения вероятностей несовместимых событий, получим:

г) Пусть событие D1 – хотя бы один узел стал неисправным, тогда:

.


Задача № 2

 

№39. По линии связи могут быть переданы символы А, В, С. Вероятность передачи символа А равна 0,5; символа В – 0,3; символа С – 0,2. Вероятности искажения при передаче символов А, В, С равны соответственно 0,01; 0,03; 0,07. Установлено, что сигнал из двух символов принят без искажения. Чему равна вероятность, что передавался сигнал АВ?

Решение:

Пусть событие А – передача символа А, событие В – передача символа В, событие С – передача символа С, событие  - искажение при передаче символа А, событие  и  - искажения при передаче символов В и С соответственно.

По условию вероятности этих событий равны:

,  , , ,

Если события ,  и  - искажения при передаче символов, то события ,  и  - отсутствие искажений при передаче. Их вероятности:

Обозначим через D событие, состоящее в том, что были переданы два символа без искажений.

Можно выдвинуть следующие гипотезы:

Н1 – переданы символы АА,

Н2 – символы АВ,

Н3 – символы ВА,

Н4 – символы АС,

Н5 – символы СА,

Н6 – символы ВВ,

Н7 – символы ВС,

Н8 – символы СВ,

Н9 – символы СС.

Вероятности этих гипотез:

Условные вероятности события D если имела место одна из гипотез будут:

По формуле Бейеса вычислим условную вероятность  с учетом появления события Р:

Задача № 3

 

№№ 41-60. Найти вероятность того, что в п независимых испытаниях событие появится: а) ровно k раз; б) не менее k раз; в) не более k раз; г) хотя бы один раз, если в каждом испытании вероятность появления этого события равна р (см. исходные данные в таблице).

n=5 k=4 p=0,8

Решение:

Так как число испытаний невелико, то для вычисления искомой вероятности воспользуемся формулой Бернулли:

, где

число сочетаний из п элементов по k, q=1-p. В рассматриваемом случае:

а) вероятность появления события ровно 4 раза в 5 испытаниях:

б) вероятность появления события не менее 4 раз в 5 испытаниях:

в) вероятность появления события не более 4 раз в 5 испытаниях:

г) вероятность появления события хотя бы один раз в 5 испытаниях:

Задача № 4

 

№№ 61-80. Дана плотность распределения f(x) случайной величины Х. Найти параметр а, функцию распределения случайной величины, математическое ожидание М[Х], дисперсию D[X], вероятность выполнения неравенства х1<x< x2, построить график функции распределения F(x).

Решение:

Для определения параметра а воспользуемся основным свойством плотности распределения:

, так как при  плотность распределения равна нулю, то интеграл примет вид:  или , откуда

;

Функция распределения связана с функцией плотности соотношением:

Откуда получим:

Математическое ожидание  и дисперсию  определим по формулам:

Вероятность выполнения неравенства <x< определим по формуле: Р( <x< )=F( ) – F( )=

                      Задача №5

 

№№ 81-100. Найти вероятность попадания в заданный интервал  нормально распределенной случайной величины, если известны ее математическое ожидание а и среднее квадратическое отклонение  (см. исходные данные в таблице).

a = 10 b = 22

 a = 8

s = 6

 

Решение:

Для определения искомой вероятности воспользуемся формулой:

Здесь  - функция Ломпаса, значения которой определяются по таблице. Учитывая, что функция Ф(х) нечетная, получим:


Информация о работе «Контрольная по теории вероятности»
Раздел: Математика
Количество знаков с пробелами: 4561
Количество таблиц: 2
Количество изображений: 2

Похожие работы

Скачать
138817
24
10

... мышц и скоростью их сокращения, между спортивным достижением в одном и другом виде спорта и так далее. Теперь можно составить содержание элективного курса «Основы теории вероятностей и математической статистики» для классов оборонно-спортивного профиля. 1.  Комбинаторика. Основные формулы комбинаторики: о перемножении шансов, о выборе с учетом порядка, перестановки с повторениями, размещения с ...

Скачать
100095
5
2

... проверить знания студента из первой части курса, которая излагается в первых четырёх модулях. Во вторых вопросах билета проверяются знания классической предельной проблемы теории вероятностей и математической статистики, которые излагаются в следующих пяти модулях. 1.  Вероятностная модель с не более чем счётным числом элементарных исходов. Пример: испытания с равновозможными исходами. 2.  ...

Скачать
98993
10
0

... вероятностей совместимых событий; формулы: полной вероятности, Бейеса (Байеса). Одной из форм дифференцированного обучения по курсу теории вероятностей может являться факультативный курс. 2. Разработка программы факультативного курса по теории вероятностей в курсе математики 8 класса   2.1 Основные понятия о факультативном курсе Возможность 1-2 часа в неделю дополнительно работать со ...

Скачать
53712
10
2

... монету второй раз не бросают), в четвертом — второму. Шансы игроков на выигрыш относятся как 3 к 1. В этом отношении и надо разделить ставку. Глава II. Элементы теории вероятностей и статистики на уроках математики в начальной школе (методика работы) Первый шаг на пути ознакомления младших школьников с миром вероятности состоит в длительном экспериментировании. Эксперимент повторяют много раз при ...

0 комментариев


Наверх