4. Вычисление площадей и объёмов с помощью двойных интегралов.
а) Объём.
Как мы знаем, объем V тела, ограниченного поверхностью
, где
- неотрицательная функция, плоскостью
и цилиндрической поверхностью, направляющей для которой служит граница области D, а образующие параллельны оси Oz, равен двойному интегралу от функции
по области D :
![]()
Пример 1. Вычислить объем тела, ограниченного поверхностями x=0, у=0, х+у+z=1, z=0 (рис. 17).


Рис.17 Рис.18
Решение.
D - заштрихованная на рис. 17 треугольная область в плоскости Оху, ограниченная прямыми x=0, у=0, x+y=1. Расставляя пределы в двойном интеграле, вычислим объем: 
Итак,
куб. единиц.
Замечание 1. Если тело, объем которого ищется, ограничено сверху поверхностью
а снизу—поверхностью
, причем проекцией обеих поверхностей на плоскость Оху является область D, то объем V этого тела равен разности объемов двух “цилиндрических” тел; первое из этих цилиндрических тел имеет нижним основанием область D, а верхним - поверхность
второе тело имеет нижним основанием также область D, а верхним - поверхность
(рис.18).
Поэтому объём V равен разности двух двойных интегралов :
![]()
или
(1)
Легко, далее, доказать, что формула (1) верна не только в том случае, когда
и
неотрицательны, но и тогда, когда
и
- любые непрерывные функции, удовлетворяющие соотношению
![]()
Замечание 2. Если в области D функция
меняет знак, то разбиваем область на две части: 1) область D1 где
2) область D2 ,где
. Предположим, что области D1 и D2 таковы, что двойные интегралы по этим областям существуют. Тогда интеграл по области D1 будет положителен и будет равен объему тела, лежащего выше плоскости Оху. Интеграл по D2 будет отрицателен и по абсолютной величине равен объему тела, лежащего ниже плоскости Оху, Следовательно, интеграл по D будет выражать разность соответствующих объемов.
б) Вычисление площади плоской области.
Если мы составим интегральную сумму для функции
по области D, то эта сумма будет равна площади S,
![]()
при любом способе разбиения. Переходя к пределу в правой части равенства, получим
![]()
Если область D правильная , то площадь выразится двукратным интегралом

... формулы Ньютона — Лейбница. Тем самым окончательно оформился общий метод. Предстояло еще научиться находить первообразные многих функций, дать логические основы нового исчисления и т. п. Но главное уже было сделано: дифференциальное и интегральное исчисление создано. Символ ∫ введен Лейбницем (1675 г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово ...
... выражения типа дивергенции по п- мерной области и интеграл по ограничивающей ее сверхповерхности S с уравнением L(x,y,z,…)=0. Если придерживаться прежних обозначений, то формула имеет вид (3) Впрочем, Остроградский не применял геометрических образов и терминов, которыми пользуемся мы: геометрия многомерных пространств в то время еще не существовала. В “Мемуаре об исчислении вариаций кратных ...
... Спорщики возьмут в руки перья и, сказав: “Начнем вычислять” - примутся за расчеты. Как уже отмечалось, Лейбниц одновременно с Ньютоном и независимо от него открыл основные принципы дифференциального и интегрального исчислений. Теория приобрела силу после того, как Лейбницем и Ньютоном было доказано, что дифференцирование и интегрирование - взаимно обратные операции. Об этом свойстве хороню знал и ...
... все содержание посылок, поскольку оно необходимо для вывода, имеет нечувственный характер. (аксиомы, постулаты). VI. Интуитивизм, индивидуалистический эмпиризм и априоризм критической философии в их отношении к теории элементарных методов знания. Три ответа на вопрос о происхождении общих суждений: 1) Путем прямых методов (прямой индукции) = интуитивизм. 2) Общих суждений нет Только иллюзия. ( ...
0 комментариев