Войти на сайт

или
Регистрация

Навигация


МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Математический факультет

Кафедра прикладной математики

ДИПЛОМНЫЙ ПРОЕКТ

сингулярное разложение в линейной задаче метода наименьших квадратов

Заведующий кафедрой прикладной

математики

Исполнил:

Научный руководитель

 

Владикавказ 2002

СОДЕРЖАНИЕ

ВВЕДЕНИЕ............................................................................................................................................................................. 3

Глава 1. Метод наименьших квадратов.................................................................................................. 7

1.1. Задача наименьших квадратов......................................................................................................... 7

1.2. Ортогональное вращение Гивенса................................................................................................... 9

1.3. Ортогональное преобразование Хаусхолдера.......................................................................... 10

1.4. Сингулярное разложение матриц................................................................................................... 11

1.5. QR–разложение........................................................................................................................................ 15

1.6. Число обусловленности....................................................................................................................... 20

глава 2. Реализация сингулярного разложения.......................................................................... 25

2.1. Алгоритмы.................................................................................................................................................. 25

2.2. Реализация разложения....................................................................................................................... 27

2.3. Пример сингулярного разложения.................................................................................................. 29

глава 3. Использование сингулярного разложения в методе наименьших квадратов 33

ЗАКЛЮЧЕНИЕ................................................................................................................................................................... 38

ЛИТЕРАТУРА..................................................................................................................................................................... 39

ПРИЛОЖЕНИЕ 1. Исходные тексты программы............................................................................... 40

ПРИЛОЖЕНИЕ 2. контрольный пример..................................................................................................... 45

ВВЕДЕНИЕ

Метод наименьших квадратов обычно используется как составная часть некоторой более общей проблемы. Например, при необходимости проведения аппроксимации наиболее часто употребляется именно метод наименьших квадратов. На этом подходе основаны: регрессионный анализ в статистике, оценивание параметров в технике и т.д.

Большое количество реальных задач сводится к линейной задаче наименьших квадратов, которую можно сформулировать следующим образом.

Пусть даны действительная m´n–матрица A ранга k£min(m,n) и действительный m–вектор b. Найти действительный n–вектор x0, минимизирующий евклидову длину вектора невязки Ax–b.

Пусть y – n–мерный вектор фактических значений, x – n–мерный вектор значений независимой переменной, b – коэффициенты в аппроксимации y линейной комбинацией n заданных базисных функций j:

.

Задача состоит в том, чтобы в уравнении подобрать такие b, чтобы минимизировать суммы квадратов отклонений e=y–Xb, где X – есть так называемая матрица плана, в которой строками являются n–мерный вектора с компонентами, зависящими от xj:  каждая строка соответствует определенному значению xj. Коэффициенты можно найти решая нормальные уравнения , откуда . Покажем это. Возведем в квадрат выражение для е:

т. к. .

Это выражение имеет экстремум в точке, где =0

Откуда и получаем .

Следует отметить, что последнее выражение имеет в определенной степени формальный характер, т. к. решение нормальных уравнений, как правило, проводится без вычисления обратной матрицы (метод Крамера) такими методами как метод Гаусса, Холесского и т. д.

Пример. Пусть заданы результаты четырех измерений (рис. 1): y=0 при x=0; y=1 при x=1; y=2 при x=3; y=5 при x=4. Задача заключается в том, чтобы провести через эти точки прямую  таким образом, чтобы сумма квадратов отклонений была минимальна. Запишем уравнение, описывающее проведение прямой  по результатам измерений. Мы получаем переопределенную систему:

или Xb=y. Нам понадобится матрица XTX и обратная к ней:

Тогда решение b=(XTX)-1XTy по методу наименьших квадратов будет иметь вид

Таким образом, оптимальная прямая задается уравнением  Метод точечной квадратичной аппроксимации (метод наименьших квадратов) не предполагает, что мы должны приближать экспериментальные данные лишь с помощью прямых линий. Во многих экспериментах связи могут быть нелинейными, и было бы глупо искать для этих задач линейные соотношения. Пусть, например, мы работаем с радиоактивным материалом. Тогда выходными данными у являются показания счетчика Гейгера в различные моменты времени t. Пусть наш материал представляет собой смесь двух радиоактивных веществ, и мы знаем период полураспада каждого из них, но не знаем, в каких пропорциях эти вещества смешаны. Если обозначить их количества через С и D, то показания счетчика будут вести себя подобно сумме двух экспонент, а не как прямая:

. (1)

На практике, поскольку радиоактивность измеряется дискретно и через различные промежутки времени, показания счетчика не будут точно

Рис. 1. Аппроксимация прямой линией.

соответствовать (1). Вместо этого мы имеем серию показаний счетчика  в различные моменты времени , и (1) выполняется лишь приближенно:

Если мы имеем более двух показаний, m>2, то точно разрешить эту систему относительно C и D практически невозможно. Но мы в состоянии получить приближенное решение в смысле минимальных квадратов.

Ситуация будет совершенно иной, если нам известны количества веществ C и D и нужно отыскать коэффициенты l и m. Это нелинейная задача наименьших квадратов, и решить ее существенно труднее. Мы по–прежнему будем минимизировать сумму квадратов ошибок, но сейчас она уже не будет многочленом второй степени относительно l и m, так что приравнивание нулю производной не будет давать линейных уравнений для отыскания оптимальных решений.

Глава 1. Метод наименьших квадратов 1.1. Задача наименьших квадратов

Задача наименьших квадратов заключается в минимизация евклидовой длины вектора невязок || Ax-b ||.

Теорема 1. Пусть А – m´n–матрица ранга k, представленная в виде

A=HRKT (2)

где H ортогональная m´m матрица; R – m´n–матрица вида

, (3)

где: R11 – kxk–матрица ранга k; K – ортогональная kxk–матрица. Определим вектор

(4)

и введем новую переменную

. (5)

Определим  как единственное решение системы R11y1=g1. Тогда:

1.       Все решения задачи о минимизации ||Ax-b|| имеют вид , где y2 произвольно.

2.       Любой такой вектор  приводит к одному и тому же вектору невязки . (6)

3.       Для нормы r справедливо

4.       Единственным решением минимальной длины является вектор

Доказательство. В выражении для квадрата нормы невязки заменим A на HRKT в соответствии с (2) и умножая на ортогональную матрицу HT (умножение на ортогональную матрицу не меняет евклидову норму вектора) получим

(7)

Далее из (3) и (5) следует, что

.

Из (4) следует

Подставляя оба последних выражения в (7) получим

Последнее выражение имеет минимальное значение  при R11y1=g1, а в этом уравнении единственным решением является , так как ранг матрицы R11 равен к. Общее решение y выражается формулой , где y2 произвольно. Для вектора  имеем

,

что устанавливает равенство (3). Среди векторов  наименьшую длину имеет тот, для которого y2=0. Отсюда следует, что решением наименьшей длины будет вектор . Теорема доказана.

Всякое разложение матрицы А типа (2) мы будем называть ортогональным разложением А. Заметим, что решение минимальной длины, множество всех решений и минимальное значение для задачи минимизации ||Ax-b|| определяются единственным образом. Они не зависят от конкретного ортогонального разложения.

При проведении разложения необходимо приводить матрицы к диагональному виду. Для этого обычно используются два преобразования: Гивенса и Хаусхолдера, оставляющие нормы столбцов и строк матриц неизменными.

1.2. Ортогональное вращение Гивенса

Лемма. Пусть дан 2–вектор , причем  либо .Существует ортогональная 2´2 матрица такая, что:

(8)

Доказательство. Положим:

.

Далее прямая проверка.

Матрица преобразования представляет собой матрицу вращений

или отражений

1.3. Ортогональное преобразование Хаусхолдера

Применяется для преобразования матриц к диагональному виду. Матрица преобразования представляет из себя следующее выражение: , (9)

или, если вектор v нормирован, т.е. используется вектор единичной длины , то . В обоих случаях H – симметричная и ортогональная матрица. Покажем это:

.

Отсюда следует: что , т.е. симметричность и ортогональность. В комплексном случае матрица  эрмитова[1] и унитарна[2]. Предположим, что дан вектор х размерности m, тогда существует матрица H такая, что , где

а s = +1, при положительной первой компоненте вектора х и = –1, при отрицательной.

Доказательство. Положим  действительная матрица. Любую действительную матрицу можно привести в треугольному виду

Далее принимаем во внимание то, что  и получаем следующее:

1.4. Сингулярное разложение матриц

Пусть X – матрица данных порядка Nxp, где N>p, и пусть r – ранг матрицы X. Чаще всего r=p, но приводимый ниже результат охватывает общий случай, он справедлив и при условии r<p.

Теорема о сингулярном разложении утверждает, что

(10)

где V – матрица порядка Nxr, столбцы которой ортонормированы, т.е. ; U – матрица с ортонормированными столбцами порядка pxr; таким образом, ; Г – диагональная матрица порядка rxr, диагональные элементы которой , называемые сингулярными числами матрицы X, положительны. Используя диагональные элементы  матрицы Г, столбцы  матрицы V, и столбцы  матрицы U, сингулярное разложение матрицы X, определяемое по (10), можно записать в виде:

(11)

Имеют место следующие фундаментальные соотношения.

·        Квадратная симметричная матрица XX' порядка NxN, имеет r положительных и N–r нулевых собственных чисел. Положительными собственными числами XX' являются , а соответствующими собственными значениями – . Таким образом, сингулярные значения  – это положительные квадратные корни из положительных собственных чисел матрицы XX', а столбцы матрицы V – соответствующие собственные векторы.

·        Квадратная симметричная матрица X'X порядка pxp, имеет r положительных и p–r нулевых собственных чисел. Положительными собственными числами X'X являются , а соответствующими собственными значениями – , таким образом, сингулярные значения  – это положительные квадратные корни из положительных собственных чисел матрицы X'X, а столбцы матрицы U – соответствующие собственные векторы.

Положительные собственные числа матрицы X'X и XX' совпадают и равны . Более того, если um – собственный вектор матрицы X'X, а vm – собственный вектор матрицы XX', соответствующие одному и тому же собственному числу , то um и vm связаны следующим соотношением

(12)

Эти соотношения дают возможность вычислять , зная , и наоборот. В компактной форме эти соотношения можно записать следующим образом:

. (13)

Исследование матрицы X'X в факторном анализе называется R-модификацией, а XX' – Q–модификацией. Соотношения (12)–(13) показывают, что результаты Q–модификации можно получить по результатам R–модификации и наоборот.

Практическая последовательность нахождения сингулярного разложения следующая.


Информация о работе «СИНГУЛЯРНОЕ РАЗЛОЖЕНИЕ В ЛИНЕЙНОЙ ЗАДАЧЕ МЕТОДА НАИМЕНЬШИХ КВАДРАТОВ»
Раздел: Математика
Количество знаков с пробелами: 45144
Количество таблиц: 1
Количество изображений: 19

Похожие работы

Скачать
15112
0
1

... . Эти свойства обеспечиваются специальной последующей обработкой. Сама итерационная процедура представляет собой (QR-алгоритм Фрэнсиса, адаптированный Голубом и Райншем к задаче вычисления сингулярных чисел. Глава 2. Применение сингулярных матриц при многомерном анализе химических данных факторными методами 2.1. Общие сведения о факторных методах Многомерный анализ данных играет все ...

Скачать
69425
2
0

... В: (2.3) Теперь будет сформулирована простая задача спектральной оценки. Особое внимание будет уделено моделированию свойств процесса сбора данных, которые являются общими для многих задач обработки решеток. Эти свойства включают измерение корреляционной функции при конечном числе неравномерно распределенных точек и ограничения на область пространства частоты-воктора волны, в ...

Скачать
50501
1
22

... на языке Turbo Pascal 7.0 для решении систем линейных алгебраических уравнений, используя метод простой итерации. 1.2 Математическая формулировка задачи Пусть А – невырожденная матрица и нужно решить систему где диагональные элементы матрицы А ненулевые. 1.3 Обзор существующих численных методов решения задачи   Метод Гаусса В методе Гаусса матрица СЛАУ с помощью равносильных ...

Скачать
249178
21
46

... системам линейных алгебраических уравнений с более чем одной неизвестной; MATLAB решает такие уравнения без вычисле-ния обратной матрицы. Хотя это и не является стандартным математическим обозначением, система MATLAB использует терминологию, связанную с обычным делением в одномерном случае, для описания общего случая решения совместной системы нескольких линейных уравнений. Два символа деления / ...

0 комментариев


Наверх