2.    Образы двух параллельных прямых был параллельными прямыми.

Доказательство. Необходимость условия очевидна. Доказательство

достаточности проведем в несколько этапов, все время предполагая, что  удовлетворяет условиям 1) и 2).

А). Образы при  двух различных прямых ,  из  суть также две различные прямые.

В самом деле, пусть ,  - прямые в , имеющие один и тот же образ , пусть  - две различные точки их общего образа. Тогда прообразы  точек  и принадлежат  и  одновременно и различны (в силу иньективности ), откуда следует, что .

Б). Отображение ,  не зависит от выбора в .

В самом деле, пусть другая точка  и , таковы, что . Если

- несплющенный параллелограмм, то из 2) и А) следует, что его образ тоже настоящий параллелограмм, откуда

,

Если точки  принадлежат одной прямой , то предположение  позволяет выбрать в точки  так, что . Применяя предыдущий случай, имеем

откуда.

Отображение  обозначаем отныне просто .

В). Отображение  инъективно и удовлетворяет условию

. (1)

Инъективность  сразу следует из инъективности . С другой стороны, для любых данных  выберем в  такие точки , , , и . Тогда .

Д). Существует отображение , такое, что

. (2)

Доказательство. Достаточно найти , удовлетворяющее условию (2) при . Для заданной пары  выберем , ,  в  так, что , . Так как точки ,  и  коллинеарны, то коллинеарны и векторы ; отсюда вытекает существование некоторого скаляра, скажем , такого, что . Остается доказать, что  не зависит от вектора  (по предположению ненулевого).

1). Если два неколлинеарных вектора, то неколлинеарны и , ; в противном случае образы двух прямых , , проходящих через одну и ту же точку  с направляющими , совпадали бы, что невозможно в силу А).

Для любого имеем

,

откуда в силу неколлинеарности ,  

.

2). Если , - коллинеарные ненулевые векторы, то предположение  позволяет выбрать так, что пары  и  свободны. Отсюда находим, что

.

Так для каждого  отображение ,  есть константа, мы обозначим ее через .

Е). Отображение  является изоморфизмом тел.

 Выбрав , мы увидим прежде всего, что соотношения  и  влекут (с учетом )

 и ,

т.е. показывают, что  - гомоморфизм тел.

Наконец, для любой точки  отображение  есть биекция  на прямую ; ограничение на есть биекция на прямую . Следовательно, композиция , биективна. Отсюда вытекает, что отображение  биективно.

Итак, изоморфизм тел, полулинейное отображение, ассоциированное с , и полуаффинное отображение.

Случай плоскости.

Если и  двумерны, то условие 2) в теореме 8.1 следует из условия 1) и инъективности . Мы можем, таким образом, сформулировать

Следствие. Если ,аффинные плоскости и - инъективное отображение, такое, что образ любой прямой в есть прямая в , то полуаффинное отображение.

Замечание. Условия теоремы 8.1 выполняются, в частности, если инъективное отображение в себя, такое, что образ любой прямой  есть прямая, параллельная ; тогда можно непосредственно доказать, что  дилатация.

9.Основная теорема аффинной геометрии.

Исходя из теоремы 8.1 и опираясь на характеризацию аффинных многообразий, представленную теоремой 4.8, мы докажем здесь следующую теорему:

Теорема 9.1. Пусть ,аффинные пространства над телами , , отличными от поля ; для того, чтобы отображение было полуаффинным, достаточно, чтобы

1). Образ любой прямой в  был прямой в , либо сводился к одной точке.

2). Аффинное подпространство в , порожденное , имело размерность .

Мы подразделим доказательство этой теоремы на семь лемм; в каждой из них предполагается, что  удовлетворяет условиям 1) и 2).

Лемма 1. Если  есть ЛАМ в , то - ЛАМ в .

Доказательство. Пусть  и - две различные точки в . Тогда прямая  есть по условию 1) образ прямой ; так как прямая содержится в , прямая  содержится в . Результат теперь вытекает из теоремы 4.8.

Лемма 2. Если - ЛАМ в  и множество  непусто, то оно является ЛАМ в .

Доказательство. Результат очевиден, если  сводится к одной точке. В противном случае для любой пары различных точек ,  прямая  содержится в  согласно 1). Таким образом, прямая содержится в  и теорема 4.8 показывает, что  есть ЛАМ.

Лемма 3. Для любой непустой части  пространства

. (1)

Доказательство.  есть ЛАМ в , содержащее ; по лемме 1,  есть ЛАМ в , содержащее . Отсюда следует включение

.

Аналогично, по лемме 2, есть ЛАМ в , содержащее , а потому и ; имеет место включение ; применение отображения  дает .

Окончательно получаем равенство (1).

Лемма 4. Пусть - пара параллельных прямых в . Если сводится к точке, то же имеет место и для . Если  - прямая, то и - прямая, параллельная .

Доказательство. Мы можем предположить, что . Тогда  есть ЛАМ размерности 2 в , порожденное двумя точками , одной из прямых и точкой  другой прямой; по леммам 2и 3,  есть ЛАМ размерности .

А). Покажем сначала, что либо .

Допустим, что  и  действительно имеют общую точку. Тогда найдутся точки  и , такие, что . Выбирая  и полагая по-прежнему , получим с помощью леммы 3, что

и аналогично

,

откуда .

Поскольку сформулированное утверждение при очевидно, будем далее полагать , т.е. считать, что и  не имеют общих точек.

Б). Предположим, что - прямая в и ; тогда  имеет размерность 2.

Если бы на прямой существовали две точки , такие, что , то для любой точки мы имели бы и , и тогда не было бы двумерным вопреки предположению. Отсюда следует, что - прямая.

Значит, и  - две прямые без общих точек, лежащие в одном ЛАМ размерности 2, т.е. параллельные.

В). Если  сводится к одной точке, то меняя ролями ии применяя результат Б), мы видим, что также сводится к точке.

Лемма 5. Если пара точек в , таких, что множества ,

непусты, то  и - ЛАМ с общим направлением.

Доказательство. По лемме 2,  и  суть ЛАМ в . Предполагая, что , фиксируем точку в и точку в ; параллельный перенос на вектор  обозначим через . Для любой точки  прямая параллельна прямой, и поскольку образ прямой сводится к одной точке , то образ прямой сводится к одной точке . Таким образом, влечет и имеет место включение .

 Меняя ролями  и , получим включение , откуда . Итак, ,  имеют общее направление.

Лемма 6. Обозначим через  общее направление непустых ЛАМ в  вида , где , и пусть - факторпространство  по отношению эквивалентности , определенному условием .

 Тогда имеет единственную аффинную структуру, такую, что каноническая проекция  является аффинной.

Доказательство. Выбор начала  в  сводит дело к случаю факторпространства векторного пространства  По его векторному подпространству , и оказывается, что достаточно применить теорему II.4.3, приняв точку  за начало в .

 Отметим, что является пространством орбит действия группы трансляций  на ; это есть множество ЛАМ с направлением .(см. §2).

Лемма 7. В обозначениях леммы 6 отображение представляется в виде , где - инъективное полуаффинное отображение; отсюда вытекает, что  полуаффинно.

Доказательство. Существование и инъективность  вытекают из того, что соотношение равносильно (см. лемму 5), и тем самым . Для доказательства полуаффинности покажем, что оно удовлетворяет условиям теоремы 8.1.

Пусть – произвольная аффинная прямая , порожденная двумя различными элементами из . Без труда проверяется, что  есть ЛАМ в , порожденное .

По лемме 3, есть ЛАМ, порожденное ; итак (в силу инъективности ), является аффинной прямой .

Наконец, не может сводиться к одной точке или прямо, так как тогда к точке или прямой сводилось бы и , что противоречит условию 2). Поэтому .

Отсюда следует, что удовлетворяет условиям 1) и 2), наложенным на , при условии замены на . Лемма 4 показывает тогда, что образы при отображении двух параллельных прямых ,  из - две параллельные прямые. Наконец, удовлетворяет всем условиям теоремы 8.1 (после замены на ). Следовательно, полуаффинно и так же обстоит дело с .

Теорема 9.1 тем самым полностью установлена.

Этот результат особенно интересен в случае, когда тела  и совпадают и не допускают других автоморфизмов, кроме тождественного (например, когда  или при : в этом случае мы получаем чисто геометрическую характеризацию аффинных отображений ранга  пространства  в .

Кроме того, очевидно, что теорема 9.1 потеряла бы силу при отсутствии условия 2): ведь любое отображение на прямую тривиальным образом удовлетворяет условию 1).

Так же и в случае  условие 1) выполнено для любого отображения  в (поскольку каждая прямая в  и состоит из двух точек). Теорема 9.1 теряет силу и в этом случае.

Наконец, нельзя заменить требование «образ прямой есть прямая или точка» более слабым условием «образы коллинеарных точек коллинераны», даже при условии, что биективно.

Например, ,  есть биекция векторного пространства над в векторное пространство над , и образ каждой прямой из при отображении содержится в фнекоторой прямой пространства , но не является полулинейным (поскольку  и не изоморфны).

Лемма 6. Обозначим через  общее направление непустых ЛАМ в  вида , где , и пусть - факторпространство  по отношению эквивалентности , определенному условием .

 Тогда имеет единственную аффинную структуру, такую, что каноническая проекция  является аффинной.

Доказательство. Выбор начала  в  сводит дело к случаю факторпространства векторного пространства  По его векторному подпространству , и оказывается, что достаточно применить теорему II.4.3, приняв точку  за начало в .

 Отметим, что является пространством орбит действия группы трансляций  на ; это есть множество ЛАМ с направлением .(см. §2).

Лемма 7. В обозначениях леммы 6 отображение представляется в виде , где - инъективное полуаффинное отображение; отсюда вытекает, что  полуаффинно.

Доказательство. Существование и инъективность  вытекают из того, что соотношение равносильно (см. лемму 5), и тем самым . Для доказательства полуаффинности покажем, что оно удовлетворяет условиям теоремы 8.1.

Пусть – произвольная аффинная прямая , порожденная двумя различными элементами из . Без труда проверяется, что  есть ЛАМ в , порожденное .

По лемме 3, есть ЛАМ, порожденное ; итак (в силу инъективности ), является аффинной прямой .

Наконец, не может сводиться к одной точке или прямо, так как тогда к точке или прямой сводилось бы и , что противоречит условию 2). Поэтому .

Отсюда следует, что удовлетворяет условиям 1) и 2), наложенным на , при условии замены на . Лемма 4 показывает тогда, что образы при отображении двух параллельных прямых ,  из - две параллельные прямые. Наконец, удовлетворяет всем условиям теоремы 8.1 (после замены на ). Следовательно, полуаффинно и так же обстоит дело с .

Теорема 9.1 тем самым полностью установлена.

Этот результат особенно интересен в случае, когда тела  и совпадают и не допускают других автоморфизмов, кроме тождественного (например, когда  или при : в этом случае мы получаем чисто геометрическую характеризацию аффинных отображений ранга  пространства  в .

Кроме того, очевидно, что теорема 9.1 потеряла бы силу при отсутствии условия 2): ведь любое отображение на прямую тривиальным образом удовлетворяет условию 1).

Так же и в случае  условие 1) выполнено для любого отображения  в (поскольку каждая прямая в  и состоит из двух точек). Теорема 9.1 теряет силу и в этом случае.

Наконец, нельзя заменить требование «образ прямой есть прямая или точка» более слабым условием «образы коллинеарных точек коллинераны», даже при условии, что биективно.

Например, ,  есть биекция векторного пространства над в векторное пространство над , и образ каждой прямой из при отображении содержится в некоторой прямой пространства , но не является полулинейным (поскольку  и не изоморфны).

 


Информация о работе «Структура аффинного пространства над телом»
Раздел: Математика
Количество знаков с пробелами: 49882
Количество таблиц: 0
Количество изображений: 5

Похожие работы

Скачать
34718
5
0

... обработать найденные объекты, для этого используются: 1.         Метод максимальных площадей. 2.         Метод гистограмм. Алгоритм был реализован с помощью библиотеки для обработки изображений OpenСV. При тестировании алгоритма использовались изображения игровой доски для игры в го с белыми и чёрными камнями. Пример его работы представлен на рис . № Эталонное изображение Исследуемое ...

Скачать
237727
39
0

... , а иногда и невозможным. Недостатки MOLAP-модели: ·           Многомерные СУБД не позволяют работать с большими базами данных. ·           Многомерные СУБД по сравнению с реляционными очень неэффективно используют внешнюю память. В подавляющем большинстве случаев информационный гиперкуб является сильно разреженным, а поскольку данные хранятся в упорядоченном виде, неопределенные значения ...

Скачать
30594
3
12

... тел, а также позволяет начинающим программистам реализовать принцип обучения на примерах. Продукт разработан на языке программирования Мicrosoft Visual C++ 5.0 с использованием объектно-ориентированной методологии. При разработке была задействована библиотека моделирования трехмерной графики OpenGL. Запуск программы возможен только в операционной среде Microsoft Windows 95. Диалог пользователя с ...

Скачать
258221
0
0

... с агрессивным поведением иммунной системы. 21 Медицинская биотехнология, ее задачи и достижения. Биотехнология представляет собой область знаний, которая возникла и оформилась на стыке микробиологии, молекулярной биологии, генетической инженерии, химической технологии и ряда других наук. Рождение биотехнологии обусловлено потребностями общества в новых, более дешевых продуктах для ...

0 комментариев


Наверх