Параметрические – гипотезы о значении параметра известного распределения;

46495
знаков
1
таблица
6
изображений

1.    Параметрические – гипотезы о значении параметра известного распределения;

2.    Непараметрические – гипотезы о виде распределения.

Обычно выделяют основную гипотезу – нулевую (H0). Пример: математическое ожидание признака x, который распределен по нормальному закону и дисперсия его известна, а H0: M(x) = a. Предполагаем, что известна дисперсия Конкурирующая гипотеза имеет вид: H1: M(x) ¹ a;

H1: M(x) > a, либо H1: M(x) = a1. Для проверки гипотез используются критерии, и они представляют собой специальным образом подобранные СВ, k – точечный или приближенный закон, который известен.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


Обычно предполагается, что если гипотеза Н0 выполняется, то вычисляемая по выборочным данным kнабл. Этого критерия и гипотеза Н0 принимается, если kнабл.Î (kкритич. левостор.; kкритич. правостор.) Если kнабл. попадает в критическую область (все остальные значения k Î(- ¥ ; kкритич. лев.) È (kкритич. прав. ; ¥), то гипотеза Н0 отвергается и принимается конкурирующая гипотеза Н1. При этом возможны ошибки двух типов: Первого рода: что гипотеза Н0 отвергается, в то время, как она верна. Вероятность этой ошибки: P(H1/H0) = a - уровень значимости критерия. Критерий подбирается так, чтобы a была как можно меньше. Второго рода: что отвергается гипотеза Н1, в то время, как она верна. b = P(H0/H1) Мощностью критерия – (1-b) - вероятность попасть точке-выборке в критическое множество, когда верна конкурирующая гипотеза.

1-b = P(H1/H1)

 

Вопрос 43

Вопрос 44

По независимым выборкам, объемы которых n1, n2, извлеченным из нормальных генеральных совокупностей, найдены исправленные выборочные дисперсии s^2*x и s^2*y. Требуется сравнить эти дисперсии.

Правило I. Для того чтобы при заданном уровне значимости α, проверить нулевую гипотезу HQ: D(X) = D(Y) о равенстве генераль­ных дисперсий нормальных совокупностей при конкурирующей гипо­тезе Ho: D (X) > D (Y), надо вычислить наблюдаемое значение критерия (отношение большей исправленной дисперсии к меньшей)

и по таблице критических точек распределения Фишера—Снедекора, по заданному уровню значимости а и числам степеней свободы k1=n1—1, k2 = n2—1 (k1—число степеней свободы большей исправ­ленной дисперсии) найти критическую точку FKР(a; k1, k2). Если Fнабл < Fкр— нет оснований отвергнуть нулевую гипотезу. Если Fна,л > Fкр — нулевую гипотезу отвергают.

Правило 2. При конкурирующей гипотезе Н1: D(X)¹D(Y) критическую точку FKP (α/2; k1 ,k2) ищут по уровню значимости а/2 (вдвое меньшему заданного) и числам степеней свободы k1 и k2 (k1—число степеней свободы, большей дисперсии). Если FHАБЛ < Fкр — нет оснований отвергнуть нулевую гипотезу. Если Fнабл > Fкр — нулевую гипотезу отвергают.

 

Вопрос 45

Вопрос 46

Разобьем множество возможных значений случайной величины X Hav разрядов (для непрерывной случайной величины роль раз­рядов играют интервалы значений, а для дискретной — отдел ь-ные возможные значения или их группы). Выдвинем нулевую гипо­тезу Но: Fx(x) = Fтеор(x) (состоящую в том, что генеральная совокуп­ность распределена по закону Fтеор(x)) при альтернативной гипотезе Н1: Fx(x) ¹ FTeop(x). Одним из критериев согласия выборочного и тео­ретического распределений (т.е. критериев соответствия генеральной совокупности определенному закону распределения) является кри­терий X^2 (критерий Пирсона), который основывается на том, что рас­пределение статистики

(где л, — число попаданий элементов выборки в i-й разряд, п - общее число элементов выборки, apiтеop — теоретическая вероятность попа­дания случайной величины Х в i-и разряд при условии истинности нулевой гипотезы) не зависит от выдвинутой гипотезы и определяет­ся только числом степеней свободы k = v — l — 1, где v — число разря­дов, аl— число оцениваемых параметров. Формулы закона распреде­ления случайной величины X^2 довольно сложны, и мы их приводить не будем, но для этого распределения составлены таблицы значений X^2k;y таких, что Р{X2 < X^2k;y } = γ (табл. П. 3).

Если выбрать уровень значимости а, то надежность γ = 1 — а = — Р{X2 < X^2k;y } и критическая область определяется неравенством X2 набл< X^2k;y

Обратим внимание на то, что критерий Пирсона можно использо­вать только в том случае, когда nртеор³5, поэтому разряды, для кото-, рых это условие не выполняется, необходимо объединить с соседними.

 

Вопрос 47

С помощью методов регрессионного анализа строятся и проверяются модели, характеризующие связь между одной эндогенной (зависимой) переменной и одной или более экзогенными (независимыми) переменными. Независимые переменные называются регрессором.

Направленность связи между переменными определяется путем предварительного обоснования и включается в модель в качестве исходной гипотезы. Задача регрессионного анализа – проверка статистической состоятельности модели, если данная гипотеза верна. Регрессионный анализ не в состоянии «доказать» гипотезу, он может лишь подтвердить ее статистически или отвергнуть.

Метод наименьших квадратов (МНК, англ. Ordinary Least Squares, OLS) является одним из основных методов определения параметров регрессионных уравнений, дающий наилучшие линейные несмещенные оценки (теорема Гаусса­–Маркова).

Метод наименьших квадратов заключается в том, чтобы определить вид кривой, характер которой в наибольшей степени соответствует эмпирическим данным. Такая кривая должна обеспечить наименьшее значение суммы квадратов отклонений эмпирических значений величин показателя от значений, вычисленных согласно уравнению этой кривой:

Уравнение линейной регрессии. Обычно признак Y рассматривается как функция многих аргументов — x1, x2, x3, ...— и может быть записана в виде:

y = a + bx1 + cx2 + dx3 + ... ,

где: а, b, с и d — параметры уравнения, определяющие соотношение между аргументами и функцией. В практике учитываются не все, а лишь некоторые аргументы, в простейшем случае, как при описании линейной регрессии, — всего один: y = a + bx
В этом уравнении параметр а — свободный член; графически он представляет отрезок ординаты (у) в системе прямоугольных координат. Параметр b называется коэффициентом регрессии. С точки зрения аналитической геометрии b— угловой коэффициент, определяющий наклон линии регрессии по отношению к осям, координат. В области регрессионного анализа этот параметр показывает, насколько в среднем величина одного признака (Y) изменяется при изменении на единицу меры другого корреляционно связанного с Y признака X.

Коэффициенты уравнения парной линейной регрессии. В случае линейной зависимости уравнение регрессии является уравнением прямой линии. Таких уравнений два: Y = a1 + by/xX — прямое и X = a2 + bx/yY — обратное, где: a и b – коэффициенты, или параметры, которые надлежит определить.
Значение коэффициентов регрессии вычисляется по формуле:


Коэффициенты регрессии b имеют размерность, равную отношению размерностей изучаемых показателей X и Y, и тот же знак, что и коэффициент корреляции.
Коэффициенты а определяются по формуле:


 

Определение параметров парной линейной регрессии


Определение параметров линейной регрессии – одна из задач регрессионного анализа. Она решается способом наименьших квадратов, основанным на требовании, чтобы сумма квадратов отклонений вариант от линии регрессии была наименьшей. Этому требованию удовлетворяет следующая система нормальных уравнений:


 

Формулы для определения параметров а и b принимают следующие выражения:


 

Уравнение линейной регрессии можно выразить в виде отклонений вариант от их средних арифметических:


В таком случае система нормальных уравнений для определения параметров а и b будет следующая:


Система уравнений парной линейной регрессии:


Эти уравнения удобны для определения параметров при отыскивании эмпирических уравнений регрессии в практической работе для точности прогнозирования результатов.

 

Вопрос 49

Временным рядом будем называть таблицу, в верхней строке которой находится счетное множество моментов времени   (с постоянной дискретностью, напр. t=2, 5, 8, 11,...), в нижней - значение некоторого показателя Y. Предположим, без ограничения общности, что Y является функцией времени. Все другие факторы, кроме времени, оказывающие влияние на Y, аккумулируем и считаем. что они представляют собой случайный процесс Z(t), математическое ожидание которого равно нулю. Таким образом  Yt=f(t)+Z(t).  Функция f(t) - детерминированная составляющая, она   называется трендом.


Информация о работе «Теория вероятностей»
Раздел: Математика
Количество знаков с пробелами: 46495
Количество таблиц: 1
Количество изображений: 6

Похожие работы

Скачать
59066
6
49

... Доказать: По определению второй смешанной производной. Найдем по двумерной плотности одномерные плотности случайных величин X и Y. Т.к. полученное равенство верно для всех х, то подинтегральные выражение аналогично В математической теории вероятности вводится как базовая формула (1) ибо предлагается, что плотность вероятности как аналитическая функция может не существовать. Но т.к. в нашем ...

Скачать
125259
9
8

... {ξn (ω )}¥n=1 . Поэтому, во-первых, можно говорить о знакомой из математического анализа (почти) поточечной сходимости последовательностей функций: о сходимости «почти всюду», которую в теории вероятностей называют сходимостью «почти наверное». Определение 46. Говорят, что последовательность с. в. {ξn } сходится почти наверное к с. в. ξ при n ® ¥ , и пишут: ξn ...

Скачать
34707
0
6

... ничего другого, кроме как опять же события и . Действительно, имеем: *=, *=, =, =. Другим примером алгебры событий L является совокупность из четырех событий: . В самом деле: *=,*=,=,. 2.Вероятность. Теория вероятностей изучает случайные события. Это значит, что до определенного момента времени, вообще говоря, нельзя сказать заранее о случайном событии А произойдет это событие или нет. Только ...

Скачать
53712
10
2

... монету второй раз не бросают), в четвертом — второму. Шансы игроков на выигрыш относятся как 3 к 1. В этом отношении и надо разделить ставку. Глава II. Элементы теории вероятностей и статистики на уроках математики в начальной школе (методика работы) Первый шаг на пути ознакомления младших школьников с миром вероятности состоит в длительном экспериментировании. Эксперимент повторяют много раз при ...

0 комментариев


Наверх