Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ)

330445
знаков
3
таблицы
30
изображений

Кольцом называется числ. множ. На котором выполняются три опер-ии: слож, умнож, вычит.
Полем наз. Числ множ. На котором выполняются 4 операции: слож, умнож, вычит, деление(кроме деления на 0).

Впопрос 1.
Система натуральных чисел. Принцип мат. Индукции.

Аксиомы Пиано: 1.В N cущ. ! элем. a’ непосредст. следующий за а. 2.Для люб-го числа а из N сущ-т ! эл-т а’ непосредственно следующий за а. 3. Для люб. элем-та из N сущ. не более 1 эл-та за которым непосредственно следует данный эл-т. 4. Пусть М ċ N и выполн-ся: 1. 1? М 2. если а?М след-но а’?M тогда М=N

опр: Любое множество N для эл-тов которого установлено отношение ‘непосредственно следовать за’ удавлет-щее аксиомама Пиано наз-ся множеством натуральных чисел.

Алгебр-ие операц-и на N: 1. Сложение – это алг. опер-я определенная на N и обладающая свойствами: 1.(для люб. а) а+1=а’ 2. (для люб. а,b) a+b’= (a+b)’ (a+b-сумма, а,b -слогаемые) Т.Сложение нат. чисел сущ и !. 2. Умножение: 1. для люб а а*1=а 2. для люб а,b a*b’=ab+a T/ Умножение нат чисел сущ. и !.

Свойства сложения: 1. для люб. а,bˆN a+b=b+a (комут-ть) 2. Длб люб. a,b,cˆN (a+b)+c=a+(b+c) (ассац-ть)

Свойства умнож-я: 1.(Для люб. а,bˆN) ab=ba 2. (для люб. a,b,c ˆN) (ab)c=a(bc) 3.(a,b,cˆN) a(b+c)=ab+ac

Операции вычитания и деления лишь частично выполняются на N. Отношение порядка на N: На N введем отношение ‘ n=р*q (1), р≤q. Заменим в (1) q на р: n≥р2, т.к. р2≤n, р≤√n. ■

Всякое нат-е число n>1 либо явл-ся простым, либо м.б. предст-а в виде произв-я простых множ-й n=р12*…*рr, r≥1 (1) и (1) явл-ся ! с точностью до порядка следования множ-й. (1) наз-ся разл-м числа n на простые множ-ли. Док-во: 1. док-во сущ-я предст-я (1): Если n –число простое, то ■. Пусть n-сост-е и р1 его натур-й дел-ль. Как было док-но р1 число простое и можно записать: n=р*n1, где р≤n1. Если n1 число простое, то ■; если n1 сост-е, то р2 – его наименьший простой делитель. n12*n2, n=р12*n2. Если n2 сост-е, то рассуждаем аналог. Это можно прод-ть пока не придем к какому-либо ns=1. То, что после конечного числа шагов такое ns должно получ-ся => из того, что n>n1>n2>…>nsмн-во нат-х чисел, т.е. все эти числа меньше n. Итак, через конеч-е число шагов число n можно пред-ть в виде (1). 2. Док-во !: Предпол-м, что сущ-т 2 разлож-я числа n на простые множ-ли n=p1*p2*…*pr и n=q1*q1*…*qs, где р1, …рr, q1,…qs простые числа. p1*p2*…*pr= q1*q2*…*qs. Нужно показ-ть r=s. Левая часть делит-ся на р1 => на р1 делит-ся и правая часть. Учит-я, что в правой части стоят также простые числа, то по свойству простых чисел р совпадает с одним из них. Пусть р1=q1, тогда после сокращ-я: p2*…*pr= q2*…*qs. Аналог. рассуж-я, убеждаемся, что р2 совп-т с одним из множ-й q. Пусть р2=q2, после сокр-я: p3*…*pr= q3*…*qs и т.д. Предпол-м, что r≠s. Пусть r считать закон-м как только найдено число >√m.


Вопрос 3.

Кольцо целых чисел. Теорема о делении с остатком. НОД и НОК двух чисел.

На N вып-ы опер-и “+” и “*”, но опер-я “-” вып-ся частично, т.е. ур-е а+х=в в N не всегда разреш-о. Это одна из причин разширения N. При расщ-и одной с-ы чисел до др-й должны вып-ся несколько треб-й: 1) NЄZ. 2) +,* должны вып-ся в Z, причем рез-ы опер-й для чисел из N в N и Z должны совп-ть. 3) +,* - комут-ы, ассоц-ы и связ. дистр-м законом. 4) в Z должна вып-ся опер-я “-”. т.е. ур-е а+х=в одноз-о разрешимо в Z для люб-х а,вЄZ. 5) Z должно быть миним. расш-м из всех расш-й мн-ва N облад-е св-ми 1-4.

Число в делит а, если сущ-т qЄZ, что а=b*q. Отношение “b делит а” наз-ют отношением делимости и зап-т b|а. Св-ва: 1) (Ґа)(а|a). 2) (Ґa,b,c)(a|b^b|c=>a|c). 3) (Ґа)(а|0). 4) (Ґа)(0ła). 5) (Ґа)(1|a^-1|a). 6) a|b^b|a=> b=±a. 7) (Ґx)(а|b=>a|b*x). 8) (Ґx1,x2,…xr)(b|a1^b|a2…^b|ar=>b|(x1a1+x2a2+…+xrar)).9)(Ґа,b)(b|a=>|b|0^b>0=>bb|(-a)=>(-b)|a.

Теорема о делении с остатком. Разделить целое число a на bЄZ, это значит найти 2 таких q и rЄZ, что a=b*q+r (1) 0≤r f(x) и g(x) ассоц-ы, f(x)=cg(x), cЄP[x]. 3. g(x)|f(x) и φ(x)|g(x) => g(x)|(f(x)±φ(x)). 4. Если f1(x), f2(x),…, fk(x) делятся на g(x), для Ґc1, c2,…ckЄР, то сумма [c1f1(x)+c2f2(x),…,ckfk(x)] делится на g(x). 5. Если g(x)|f1(x) => f1(x)f2(x)…fk(x) делится на g(x). 6. Если f1(x)|g(x), f2(x)|g(x),…fk(x)|g(x) => g(x)|[ n1(x)f1(x)+ n2(x)f2(x)+…+nk(x)fk(x)], ni(x), fi(x), gi(x)ЄP[x], i=1,2,…k. 7. Если n(x), f(x), g(x)ЄP[x] и n(x)|f(x) и g(x)|n(x), то g(x)|f(x). 8. Мн-ны нулевой степени из Р[х] явл-ся делителями Ґf(x)ЄP[x]. 9. Мн-ны cf(x), где с≠0 и только они будут делителями мн-на f(x) имеюш-ми такую же степень, что и f(x). 10. ҐДелитель f(x), cf(x), c≠0 будут делителями и для другого мн-на. Пусть Ґf(x), g(x)ЄP[x]. Общим делителем мн-в f(x), g(x) явл-ся такой мн-н d(x)ЄP[x], что d(x)|f(x) и d(x)|g(x). Нод(f(x), g(x)) наз-ся мн-н D(x) такой, что 1. D(x)=ОД(f(x), g(x)), 2. d(x)|D(x), где d(x)=ҐОД(f(x), g(x)). Покажем, что НОД сущ-т для Ґмн-в f(x), g(x)ЄP[x]≠0. пусть степень f(x) ≥ степени g(x). Делим f(x) на g(x) с остатком f(x)=g(x)q(x)+r1(x). Если r1(x)=0, тогда НОД(f(x), g(x))=q(x). Если r1(x)≠0, то степень r1(x)< степени g(x), но >0. Делим g(x) на r1(x) с остатком g(x)=r1(x)q1(x)+r2(x). Если r2(x)≠0, 0< степень r2(x) < степень r1(x), делим r1(x) на r2(x) с ост-м r1(x)=r2(x)q2(x)+r3(x). и т.д. Т.к. степень остатков понижается оставаясь не отриц-й, то через конечное число шагов мы придем к остатку rk(x), на который разделится предыд-й остаток. Этот процесс наз-ся Алгоритмом Евклида. Итак, применяя алгор-м Евкл-а для мн-в f(x) и g(x) мы получили совокупность f(x) = g(x)q(x)+r1(x), g(x) = r1(x)q1(x)+r2(x), r1(x) = r2(x)q2(x)+r3(x) … rk-2(x) = rk-1(x)qk-1(x)+rk(x), rk-1(x) = rk(x)qk(x) (1). Док-м, что послед-й ≠0 остаток rk(x) в алгоритме Евк-а явл-ся НОД. Будем рассм-ть (1) снизу вверх: rk(x)|σk-1(x), rk(x)|σk(x) и σk(x)|σk-1(x) => rk(x)|rk-2(x)…, rk(x)|rk-2(x) и rk(x)|r1(x) => rk(x)|g(x), rk(x)|r1(x) и rk(x)|g(x) => rk(x)|f(x). Получим, что rk(x)|f(x) и σk(x)|g(x) => σk(x)= ОД(f(x),g(x)). Покажем, что rk(x)=НОД(f(x), g(x)). Пусть n(x) - Ґдругой ОД(f(x), g(x)). Рассм-м (1) сверху вниз: n(x)|f(x) и n(x)|g(x) => n(x)|r1(x), n(x)|g(x) и n(x)|r1(x) => n(x)|r2(x), n(x)|r1(x) и n(x)|r2(x) => n(x)|r3(x)… n(x)|rk-2(x) и n(x)|rk-1(x) => n(x)|rk(x). Получили: n(x)|rk(x)=ОД(f(x), g(x)) => rk(x)=НОД(f(x), g(x)). Итак, мы док-ли, что последний ≠0 остаток в алгор-е Евклида явл-ся НОД для мн-в f(x) и g(x). Нетрудно убелиться, что НОД мн-в f(x) и g(x) явл-ся ! с точностью до мн-ля нулевой степени. Действительно, пердположим, что D1(x)=НОД(f(x), g(x)) и D2(x)=НОД(f(x), g(x)). Т.к. D1(x)=НОД(f(x), g(x)) => D2(x)|D1(x), а т.к. D2(x)=НОД(f(x), g(x)), то имеем D1(x)|D2(x). Получим: D2(x)|D1(x) и D1(x)|D2(x) => св-во 2 D1(x)=cD2(x). Алгоритм Евклида показываем, что если f(x) и g(x) имеют оба рац-е коэф-ы или оба действ-е коэф-ы, то и коэф-ы их НОД будут соотв-о или рац-ми, или дейст-ми. Если D(x)=НОД(f(x), g(x)), где f(x), g(x)ЄP[x], то сущ-т φ(x), ψ(x)ЄP[x], что f(x)φ(x)+g(x)ψ(x)=D(x). Обратимся к алгор-у Евклида для мн-на f(x) и g(x): f(x) = g(x)q(x)+r1(x), g(x) = r1(x)q1(x)+r2(x), r1(x) = r2(x)q2(x)+r3(x) … rk-2(x) = rk-1(x)qk-1(x)+rk(x), rk-1(x) = rk(x)qk(x). Перепишем все рав-ва алго-а Евклида, кроме послед-го (1). Выразим остаток из каждого равенства r1(x)=f(x)-g(x)q(x), r2(x)=g(x)-r1(x)q1(x), r3(x)=r1(x)-r2(x)q2(x)…rk(x)=rk-2(x)-rk-1(x)qk-1(x) (1). Перепишем первое рав-во (1): r1(x)=f(x)*1+g(x)(-q(x)). Обозначим φ1(x)=1, ψ1(x)=-q(x), тогда имеем r1(x)=f(x)φ1(x)+g(x)ψ1(x). Теперь второе из (1): r2(x) = g(x)-r1(x)q1(x) = g(x)-(f(x),φ1(x) + g(x)ψ1(x)) q1(x) = g(x)-f(x)φ1(x)q1(x)-g(x)ψ1(x)q1(x) = f(x)(-φ1(x)q1(x)) + g(x)(1-ψ1(x)q1(x)) = f(x)φ2(x)+g(x)ψ2(x). r2(x) = f(x)φ2(x)+g(x)ψ2(x). Подставим полученное выражение для r1(x) и r2(x) в выражение для r3(x) из (1). Получим, проделывая аналогичные преобразования r3(x)= f(x)φ3(x)+g(x)ψ3(x). и т.д. опускаясь ниже получим rk(x)= f(x)φk(x)+g(x)ψk(x). Как было док-но выше rk(x) явл-ся НОД мн-в f(x) и g(x) , причем НОД определен с точностью до множ-ля нулевой сиепени. Умножая обе части последнего равенства на с: crk(x)= f(x)(cφk(x))+g(x)(cψk(x)).


Вопрос 7.

Неприводимые над полем многочлены.

Мн-н f(x)ЄP[x] наз-ся неприводимым над полем Р, если он не разлагается в произведение многоч-в положительной степени над полем Р. Мн-н наз-ся приводимым над полем Р, если он разлагается в произведение мн-в положит-й степени. Вопрос приводимости зависит от того поля, над которым мы его рассматриваем. Н-р, 1)f(x)=x2-2 неприводим над полем Q, но приводим над полем R. 2) f(x)=x2+1 неприводим над R, приводим над C. 3)φ(x)=x+1 непривд-м ни над одним числовым полем. Над полем ком-х чисел неприво-м только мн-ы 1-й степени. Над полем дейст-х чисел неприводимы мн-ны 1-й степени и квадратный трехчлен, у которого дискр-т эти мн-ны отлич-ся друг от друга множ-м нулевой степени. (Док-во. Т.к. p1(x) - неприводим, то в p1(x) = p2(x)g(x) один из множ-й есть мног-н нулевой степени g(x)=c-const. Т.о. p1(x) = p2(x)c. Мног-ны p1(x), p2(x) явл-ся ассоциированными.) 2. Ґf(x)ЄP[x], p(x)ЄP[x] – непривомн-н => либо f(x), p(x) взаимно просты, либо p(x)|f(x). (Док-во. Т.к. p(x) неприводимый мн-н, то возм-ы 2 случая:1) НОД(f(x),p(x))=c-const, тогда f(x), p(x) – взаимно просты. 2) НОД(f(x),p(x))=D(x), где D(x)=cp(x), но тогда т.к. D(x)|f(x) => cp(x)|f(x) => p(x)|f(x)). 3) Если произ-е p(x)|f(x)g(x), где p(x), f(x), g(x)ЄP[x] и p(x) – непривод-м над полем P, р(x)|f(x) или p(x)|g(x). Это св-во можно распрост-ть и на случай произвольного числа множ-й.

Теорема. Ґ мн-н f(x)ЄP выше нулевой степени явл-ся неприводимым над полем Р или разлагается в произведение неприводимых мн-в. f(x)=p1(x)p2(x)…pn(x) (*), где pi(x) – неприводимые мн-ны над полем Р, i=1,2,…n, причем это разложение явл-ся ! с точностью до порядка. Док-во. 1) Док-м возможность представления (*). Пусть мн-н f(x) выше нулевой степени. Если f(x) неприводим, то теорема док-на. Если f(x) приводим, то f(x)=f1(x)f2(x). Если оба мн-на f1(x) и f2(x) неприводимы над полем Р, то теорема док-на, если хотя бы 1 из них приводим над полем Р, то его разлагают в произведение множ-й положит-й степени. и т.д. Этот процесс конечен, т.к. степень мн-й в разложении f(x) уменьшается, оставаясь положит-ми и их может быть лишь конечное число. Итак, в конце концов мн-н f(x) будет предст-н в виде произвед-я непривод-х мн-й, т.е. в виде (*). 2) Док-м ! разложения мн-на f(x) на непривод-е мн-ли. Пусть f(x) допускает 2 разложения: f(x)=p1(x)p2(x)…pn(x) (1) и f(x)= q1(x)q2(x)…qn(x) (2). p1(x), …pn(x), q1(x),…,qn(x) неприводимые над полем Р мн-ны. Левые части равны => равны и правые части. p1(x)p2(x)…pn(x)=q1(x)q2(x)…qn(x) (3). Левая часть делится на р1(х) => и правая часть делится. Т.к. р1(х) неприводим, то на р1(х) разделится хотя бы один мн-ль правой части. Пусть р1(х)|q1(x). А т.к. р1(х) и q1(x) неприво-ы и один из них дел-ся на другой, то они ассоциированы, т.е. q1(x)=ср1(х). Подставляя это выр-е в (3) и сокращая обе части на р1(х): p2(x)…pk(x)=c1q2(x)q3(x)…ql(x) (4). Аналогично расс-я относительно p2(x) из (4): p3(x)…pk(x)=c1с2 q3(x)q4(x)…ql(x). И т.д. утверждаем, что k=l. Предположим противное. Пусть k и через всю с-у столб-в матницы Ā, т.е. справед-о (2). => Веркор (α12,…αn) – реш-е с-ы (1).

Метод Гаусса – м-д последов-го исключения неизв-х. Сводится к привед-ю с-ы лин-х ур-й к ступен-у виду, при этом получ-ся с-а равнос-я данной. Если в рез-те элем-х преоб-й получ-но ур-е с коэф-ми в левой части =0 , а своб-е члены ≠0, то с-а несовм-на. Если и своб-е члены =0, то это ур-е удаляется из с-ы. С-а лин-х ур-й явл-ся опред-й, т.е. имеет ! реш-е, если ступ-я с-а лин-х ур-й имеет треуг-й вид. В этом случ-е послед-е Ур-е с-ы содержит только 1 неизв-ю. Если ступ-я с-а имеет вид трапеции, то с-а неопределенная. Тогда в послед-м Ур-и с-ы несколько неизв-х (k V, ωα(α)=α*xЄV, αЄP, xЄV. С-а V – наз-ся век-м прост-м над полем Р, а эл-ы мн-ва V – векторами = a, b,c,…x, y, если 1. (V, ό, +,-)- аддит-я абел-я группа, 2. (α*β)*a=α*(β*α), Ґα,βЄP,aЄV. 3. (α+β)*a=α*a+β*a, Ґα,βЄP,aЄV. 4. α*(a+b)=α*a+α*b, Ґa,bЄV,ҐαЄP. 5. 1*a=a, Ґa. Например, ариф-е вект-е прост-во n мерных векторов V=Pn, мн-во C- к.ч. есть век-е прост-во над полем R действ-х чисел относ-о опер-й “+” к.ч. и “*” их на дейст-е число. Простейшие св-ва. Пусть V=(V,ό,+,-,ωα) – вектор-е прост-во. Р – поле скаляров. Ґa,bЄV, Ґα, βЄP. 1. a+b=a => b=0. 2. 0*α=ό. 3. α*ό=ό. 4. a+b=ό => b=(-1)*a=-a. 5. α*a=α*b ^ α≠0 =>a=b. 6. α*a=ό => α=0 или a=ό. 7. α*a=β*a ^ a≠ό => α=β. Пусть V – вект-е прост-во над Р, a1,a2,…amЄV, с-а вект-в a1,a2,…am наз-ся лин-о незав-й, если α1*a12*a2*…αm am=ό возм-но при всех коэф-х = 0. a1,a2,…am – лин-но завис-ы, если α1*a12*a2*…αm am=ό возм-но хотя бы при 1 коэф-е αi≠0. Вект-е прост-во наз-ся конечномерны, если оно породж-ся конечным мн-м вект-в или сущ-ют a1,a2,…amЄV, что V – лин-я оболочка порожд. этим мн-м V=L(a1,a2,…am). Базисом (базой) конеч-го век-го прос-ва наз-ся непуст-я конеч-я лин-но незав-я с-а векторов порожда-я это прост-во. ???не доконца.


Вопрос 12.

Линейные преобразования век-х прост-в.

Пусть u и v векторные простр-ва над полем Р. Отобр-е φ: uv наз-ся лин-м отображ-м или гомоморфизмом, если Ґа,bЄu,ҐαЄP: 1. φ(a+b)=φ(a)+φ(b). 2. φ(αa)=αφ(a). Если бы лин-е отоб-е u на v было бы биективным, то тогда его наз-и бы изоморфизмом вект-х прост-в. Мн-во всех лин-х отображ-й прост-ва u в v обозн-ся Hom(u,v). Св-ва. 1. Всякий лин-й опер-р φ в прост-ве v оставл-т неподвижный нулевой вектор,т.е.φ(ό)= ό. 2. φ(-x)=-φ(x). 3. Всякий лин-й опре-р φ в прост-ве v переводит Ґ лин-ю комбин-ю произвольно выбранных вект-в a1,a2,…am прост-ва V прост-ва в лин-ю комбин-ю образов этих вект-в, причем с теми же самыми коэф-ми, т.е. φ(α1a12a2+…αmam) = α1φ(a1)+α2(a2)+…+αmφ(am). Док-во. Применим метод мат-й индукции. 1) Проверим справ-ть при m=2. φ(α1a12a2) = φ(α1a1)+φ(α2a2) = α1φ(a1)+α2(a2). 2) Предположим справ-ть утвер-я для m-1 вектора, т.е. φ(α1a12a2+…αm-1am-1) = α1φ(a1)+α2(a2)+…+αm-1φ(am-1). 3) Док-м справ-ть данного утвер-я для m век-а, т.е. φ(α1a12a2+…+ αm-1am-1mam) = φ[(α1a12a2+…αm-1am-1)+ αmam] = φ(α1a12a2+…αm-1am-1) + φ(αmam) = α1φ(a1)+α2(a2)+…+αm-1φ(am-1)+αmφ(am). 4. Совокупность L всех образов φ(a) вектора а вектор-го простр-ва v, получ-е при данном преоб-ии φ, есть некоторое подпростр-во вект-го простр-ва v.

Пусть φ некоторая лин-я опре-я прос-ва vn. Выберем в прос-ве vn некот-й базис e1,e2,…en. Тогда опре-р φ переводит век-ы базиса в векторы φ(e1),φ(e2),…φ(en). Каждый из этих век-в ! образом выраж-ся через век-ры базиса: φ(e1) = α11*e121*e2+…+αn1*en, φ(e2) = α12*e122*e2+…+αn2*en,… φ(en) = α1n*e12n*e2+…+αnn*en. Матрица Aφ= k–й столбец которой явл-ся коорд-ми


столбца век-ра φ(ek) относительно базиса e1,e2,…en, наз-ся матрицей лин-го опрер-ра φ в базисе e1,e2,…en. Т.о. при фиксир-м базисе e1,e2,…en, каждому лин-у опрер-у φ прост-ва vn соответ-т вполне опред-я матрица n–го порядка. И наоборот, каждая матрица n–го пор-ка явл-ся матрицей некот-го вполне опред-го лин-го опре-ра φ прост-ва vn в базисе e1,e2,…en.

Совокупность φ(vn) образов всех век-в прост-ва vn при действии оператора φ наз-ся областью значений опер-ра φ. Размерность области значений φ(vn) наз-ся рангом лин-го опер-а φ. Ядром линей-го опер-а φ прост-а Vn наз-ся совокупность всех век-в прост-ва Vn отображ-ся операторов φ в нулевой вектор т. Ker φ= {aЄVn|φ(a)=т}. Размерность ядра Ker φ опер-ра φ прост-ва Vn наз-ся дефектом этого опер-ра. Сумма ранга и дефекта лин-го опер-а φ прост-ва Vn = размерности этого прост-ва. Если век-р b ≠0 переводится оператором φ в пропорц-й самому себе,т.е. φ(b) = λ0b, где λ0 – действ-е число, то b наз-ся собст-м вектором опер-а φ, а λ0 собственным знач-м этого опер-ра. Причем гов-т, что собст-й век-р b относ-я к собств-у знач-ю λ0. Нулевой век-р не считается собственным для опер-ра . Матрица А-λЕ, где Е един-я матрица n пор-ка наз-ся харак-й матрицей матрицы А (по главной диагонали от Эл-в «-«λ). Многочлен n степени |А-λЕ| наз-ся харак-м мног-м матрицы А, а его корни, которые могут быть как компл-е так и действ-е, наз-ся характер-ми корнями этой матрмцы. λ0ЄR был собств-м значением лин-го опер-а φ  λ0 было характ-м корнем опер-ра φ. Лин-е преоб-е наз-ся невыроженным, если определитель матрицы А≠0. Рассм-м преоб-е x1=y1,…xn=yn (I). Это преоб-е наз-ся тождеств-м. Оно ведет себя точно также как число 1 при арифм-м умнож-и,т.е. (ҐS) S*I=I*S=S. Т.е. преоб-е I это нейтр-й эл-т относ-о умнож-я преоб-я. Обратным преоб-м преобразованию S наз-ся преоб-е S-1 такое, что S*S-1=S-1*S=I. Подпрост-во L явл-ся инвариантным относ-о преоб-я φ пространства Vn, если образ Ґ век-ра из снова есть вектор L.


Вопрос 13.

Определители.

Опред-м (детерминантом) n-го порядка составл-м из n2 чисел матрицы А наз-ся алгеб-я сумма всевозм-х членов, каждый из которых представл-т собой произвед-е n эл-в, каждый из которых взят по 1 из каждой строки и столбца, взятый со знаком (-1)t , где t число инверсий перестановки вторых индексов, при усл-и, что первые индексы расположены в натуральном порядке. Δ=Σ(-1)ta1αa2β…a, α,β,…ω n! перестан-к 1,2,…n. Правило Саррюса.


Св-ва опред-й. 1. Равноправность сторк и столбцов (транспонирование). 2. Опред-ль n-го порядка, у которого 2 строки (2 столбца) одинаковы =0. 3. Если все Эл-ты какого-либо столбца (строки) опред-ля n порядка * на одно и то же число m, то и значение опред-я *m. 4. Если все Эл-ты какого-либо столбца (строки) опред-я n-го пор-ка облад-т общим множителем, то его можно вынести за знак опред-ля. 5. Опред-ль n-го пор-ка, у которого Эл-ты 2-х строк (столбцов) соответ-о пропорциональны ,=0. 6. Если все Эл-ты k строки (столбца) опред-я n-го пор-ка явл-ся суммой 2-х слагаемых, то такой опред-ль = сумме 2-х опред-й n-го пор-ка. В одном из них k-я строка (столбец) состоит из первых слаг-х, а в другом - из вторых слаг-х, все остальные строки (столбцы) те же, что и в данном опред-е. 7. Если в опред-е какая-либо строка есть линейная комбинация других строк, то такой опред-ль =0. 8. Если к Эл-м какой-либо строки (столбца) опред-я n-го пор-ка прибавить соответ-ие Эл-ты другой строки (столбца) умноженные на одно и то же число, то значение опред-я не изменится. 9. Если поменять местами 2 строки (столбца) в опред-е n-го пор-ка, то опред-ль сменит свой знак на противоположный, а его абсол-я величина не изменится. Минором Мij Эл-та aij опред-я n-го пор-ка наз-ся опрде-ль n-1 порядка, который получается из опред-я вычеркиванием i строки и j столбца. Алгебаическим дополнением Aij Эл-та aij наз-ся произ-е (-1)i+j*Mij.

Теорема. Какую бы строку (столбец) опред-я n пор-ка мы не взяли, значение опред-я = сумме произв=й Эл=в этой строки (столбца) на их же алгеб-е дополнения. Δ=ai1Ai1+ ai2Ai2+…ainAin (i=1,2,…n)(1). Δ= a1jA1j+a2jA2j+…anjAnj (2).Док-во. В силу справ-ти строк и столбцов ограничимся выводом разлож-я по строкам (1). 1) мы знаем, aijAij есть также член опред-я, причем в опред-ль входит с тем же знаком, что и в это произв-е. Т.о. Ґ слагаемое (1) состоит из членов опред-я. 2) Никакие 2 слагаемых в (1) не содержат общих членов (всего Ґ слаг-й содержит (n-1)! членов). Действительно, пусть aikAik и ailAil из (1) содержат общий член, тогда в него будут входить мн-ли aik ,ail, чего не может быть, т.к. из i строки взяты 2 эл-та. Итак (1) состоит из всех различных членов опред-я. 3) ai1Ai1+ai2Ai2+…ainAin (3). Док-м, что (3) исчерпывает все члены опред-я, т.е. Ґ член опред-я обязательно входит в (3). Рассм-м произв-е членов опред-я: (4) a1αa2β…ai-1μaijai+1ν…a, α,β,…ω пробегают n! перестан-к чисел 1,2,…n. aija1αa2β…ai-1μai+1ν…a, α,β,…ω пробегают n! перестан-к чисел 1,2,…n. Но произведение a1αa2β…ai-1μai+1ν…aчлен минора Мij => входит в алгеб-е доп-е Aij => член (4) входит в произвеление aijAij.■ 1) Если в опред-е пор-ка все эл-ы I строки, кроме эл-а aij , =0, то такой опред-ль = произв-ю его эл-та на его алгеб-е допол-е. 2) Если в опред-е n пор-ка все эл-ты лежащие ниже главной диагонали =0, то опрд-ль = произв-ю диагональных эл-в. 3) Сумма произведений эл-в какой-либо строки на алгеб-е дополнения соответствующих эл-в другой строки = 0.

Формулы Крамера. Если Δ≠0, то опред-ль имеет ! решение хnn/Δ.


Вопрос 14

Основ-ы св-ва срав-й. Приложение теории срав-й к выводу признаков делимости.

Отнош-е сравним-ти в кольце цел-х чисел: 1 опр. a≡b(mod m)  m|(a-b). 2 опр. a≡b(mod m)  a=b+m*t, tЄZ. 3 опр. a≡b(mod m)a=m*q1+z ^ b=m*q2+r. Из опр. 3 =>что сравнимые по (mod m) числа явл-ся равноостаточными при делении на m. Док-во: 1) опр. 12. Пусть a≡b (mod m) в смысле опр.1, т.е. m|(a-b) => сущ-т tЄZ, a=b+m*t, т.е. a≡b(mod m) в смысле опр.2. Пусть a≡b(mod m) в смысле опр.2, т.е. a=b+m*t => a-b=m*t => m|(a-b), т.е. a≡b(mod m) в смысле опр.1. 2)Док-м, что опр.1опр.2. Пусть a≡b(mod m) в смысле опр.3, т.е. a=m*q1+r ^ b=m*q2+r => a-b=m*(q1-q2), где q1-q2ЄZ => m|(a-b) => a≡b(mod m) в смысле опр.1. Пусть a≡b(mod m) в смысле опр.1, т.е. m|(a-b). Пусть a=m*q1+r1, b=m*q2, 0≤r1 m|(r1-r2). m|(r1-r2) и 0≤r1-r2 r1-r2=0 => r1=r2, т.е. a≡b(mod m) в смысле опр.3. т.к. отеош-е равнос. явл-ся эквивал-ти, т.е. оно симмет-о, тран-о, рефл-о, то опр.1опр.2  опр.3. Сл-е 1. Если a=m*q+r, 0≤r a≡r(mod m). Сл-е 2. Если m|a => a=0(mod m). Сл-е 3. ҐtЄZ, m*t≡0(mod m). Св-ва срав-й: 1)Отнош-е сравнимости в Z явл-ся отнош-м эквив-ти. 2)Сравнимые числа по mod m можно почленно складывать, вычитать. Док-во: a1≡b1(mod m) => a1=b1+m*t1, t1ЄZ. a2≡b2(mod m) => a2=b2+m*t2, t2ЄZ. a1±a2=(b1±b2)+m*(t1±t2) => ( по опр.2) (a1+a2)≡(b1±b2)(mod m). Сл-е 1.Слаг-е можно из одной части сравн-я переносить в др-ю, изменив знак на против-й. 2. К Ґ части сравн-я можно прибавить число кратное модулю. 3)Сравн-е числа по mod m можно почл-о перем-ть. a1≡b1(mod m) и a2≡b2(mod m) => a1*a2≡b1*b2 (mod m). Док-во: a1≡b1(mod m) =>(по опр.2) a1=b1+m*t1, t1ЄZ. a2≡b2(mod m) =>(по опр.2) a2=b2+m*t2, t2ЄZ. a1*a2=b1*b2+m*(t1*b2+t2*b1+m*t1*t2) => a1*a2≡b1*b2(mod m) tЄZ. Сл-е 1. a1≡b1(mod m) и a2≡b2(mod m) и … an≡bn(mod m) => a1*a2*…an=b1*b2*…bn(mod m). 2. a≡b(mod m) => an≡bn(mod m). ҐnЄN. 3. a≡b(mod m) => k*a≡k*b(mod m), ҐkЄZ. 4. Выраж-я сост-е путем умнож-я, выч-я, слож-я срав-х чисел, срав-ы между собой по тому же модулю. 5. f(x)=a0*xn+ a1*xn-1+…+ an-1*x+an, мн-н с цкл-ми коэф-ми Ґх11,...ЄZ, тогда x1≡x2(mod m) => f(x1)≡f(x2)(mod m). 6. В сравн-х по mod m числах можно замен-ть слаг-е и множ-ли с сран-ми с ними числами. 4)На общий делитель взаим-о простой с mod m можно разд-ть обе части сравнения, оставив mod без измен-я. a*d=b*d(mod m) и НОД(d,m)=1 => a≡b(mod m). Док-во. a*d=b*d(mod m)=> m|(a*d-b*d) => m|d*(a-b). т.к. НОД(d,m)=1, то m|(a-b) => a≡b(mod m). Замтим, что если усл-е взаим-ной простоты не выпол-ся, то сокр-е обеих частей на одно и то же число можно привести к нарушению срав-ти. 5)a*d≡b*d(mod m*d) => a≡b(mod m), dЄN. Док-во. a*d≡b*d(mod m*d) => m*d|(a*d-b*d) => m*d|d*(a-b) => m|(a-b) => a≡b(mod m). 6) a≡b(mod m1) и a≡b(mod m2) => a≡b(mod[m1,m2]), [m1,m2]=НОК(m1,m2). Признак дел-ть на 3. m=3. a=an10n+ an-110n-1+… a110+a0. 10≡1(mod 3), 102≡1(mod 3), 103≡1(mod 3),… 10n≡1(mod 3). R3=a0r0+ a1r1+…+ anrn= a0 *1+ a1 *1+ …+an 1= a0+ a1+…+an. 3|a 3|R3. Признак дел-ти на 11: a=an10n+ an-110n-1+… a110+a0. r0=1. 10≡-1(mod 11), 102≡1(mod 11), 103≡-1(mod 11),… 10n≡(-1)n(mod 11). a≡R11(mod 11). R11=a0r0+ a1r1+…+ anrn= a0 -a1+ …+(-1)n an = (a0+ a2+…)-(a1+a3+…). 11|a 11|R11, т.е. число дел-ся на 11  на 11 дел-ся раз-ть суммы цифр числа стоящих на неч-й и чет-х местах.


Вопрос 15

Полная и приведенная с-а вычетов. Теор-а Эйлера и Ферма.

Все числа сравнимые с a по mod m объединим в одно мн-во, кот-е наз-м классом-вычитов по mod m. Обозн-м ā={xЄ|x≡a(mod m)}. Ґ предст-ль мн-ва ā наз-м вычитом. Рассм-м класс вычитов по mod m: ā={xЄ|x≡a(mod m)}. Т.к. сравн-е числа,т.е. все числа Є-щие одному и тому же классу вычитов по mod m имеют одинак-е ост-ки при делении на m, то и все различ-е классы вычитов можно обоз-ть с пом-ю этих ост-в,т.к. при делении Z на m получ-ся m ост-в 0,1,…, m-1, то и мн-во Z распад-ся на m классов 0,1,...m-1 (с черт-ми). Обоз-м мн-во всех классов-вычитов по mod m через Zm. Св-ва классов-вычитов: 1. ā={a+m*t|ҐtЄZ}. 2. xЄā ^ xЄđ => ā=đ. 3. ҐбЄā => б(с чер-й)=ā. 4. a≡d(mod m) => ā≡đ. 5. a≡0(mod m) => aЄ0(чер-й). 6. a=m*q+r, 0≤r из того, что соотв-е опре-и на этом мн-ве ком-ы, ассоц-ы и св-я дист-м законом. Нетру-о пров-ть, что класс 0(с чер-й) нейтр-й Эл-т относ-о «+», 1(с чер-й) нейтр-й эл-т относ-о «*». Т.о. мн-во Zm явл-ся кольцом относ-о «+», «*» классов-вычитов по mod m и кольцо Zm=(Zm,0(с чер-й), 1(с чер-й), +,-,*) наз-ся кольцом классов-вычитов по mod m. Т.к. число классов-вычитов всегда конечно и =m,то все кольца конечны.

Если из Ґ класса-вычитов по mod m взять по одному представ-ю, то получ-я с-а вычетов наз-я полной с-й вычитов по mod m. Н-р:1. полная с-а наим-х неот-х вычитов по mod m Rm={0,1,2,..m-1}, пол-я с-а наим-х полож-х вычитов по mod m Rm+={1,2,…m}, пол-я с-а абсолютно наим-х вычитов по mod m.

Ґ совокуп-ть m целых чисел х1, х2, …хm попарно не сравн-х между собой по mod образ-т полную с-у вычитов по mod m.

(1-я теор-а). Если в лин-й форме а*х+b, где а и mзам-но просты, переем-я х пробег-т все знач-я из полной с-ы вычитов по mod m, то и лин-я форма пробегает все знач-я некот-й полной с-ы вычитов по mod m. Док-во. Пусть х={ х1, х2, …хm} произ-я полная с-а вычетов по mod m. Док-м, что с-а x’={aх1+b1, aх2+b2, …aхm+bm} также полная с-а вычитов. С-а х’ содержит m чисел(вычитов) и все эти вычеты попарно не сравнимы между собой. Допустим противное: пусть axi+b≡axj+b(mod m), 1≤i, j≤m, i≠j. Тогда по св-ву срав-й axi≡axj(mod m). А т.к. НОД(a,m)=1 (по усл-ю), то xi≡xj(mod m). Это привит к тому, что xi,xj входят в полную с-у вычитов по mod m, т.е. в Х. Итак, с-а х’ состоит из m чисел и все они попарно не срав-ы между собой => х’ явл-ся полной с=й вычитов по mod m.■

Если из Ґ класса взаимно простых с mod m взять по 1 предст-ю, то получ-ая с-а чисел наз-ся привед-й с-й вычитов по mod m. Функцией Эйлера φ(m) наз-ся число по mod m взамно простых с m или число нат-х чисел φ(p)=p-1. 2) m=pα => φ(m)=m(1-1/p). 3) m=p1α1* p2α2 *…pkαk => φ(m)=m(1-1/p1) (1-1/p2) …(1-1/pk).

Признак прив-й с-ы. С-а чисел a1 ,a2…as(1) образует привед-ю с-у вычитов по mod m, если: 1) s= φ(m); 2) числа из (1) попарно не сравнимые по mod m,т.е ai не срав-ы с aj(mod m), i≠j, i,j=1,2,..s; 3) НОД(ai,m)=1, i=1,2,…s. (Док-во. В силу усл-я 3) числа с-ы (1) нах-ся в классах взаимно простых с mod m, причем в силу усл-я 2) они лежат в разных классах. Т.к. число чисел в с-е (1)= φ(m) и число классов взаимно простых с mod m=φ(m), то всякое число из (1) попадает в ! класс взаимно простых по mod m=> с-а (1) явл-ся привед-й с-й вычитов.)

(2-я теорема) Если в лин-й форме ax, a и m взаимно просты, переменная х пробегает все значения из приведенной с-ы вычитов по mod m, то и лин-я форма ax пробегает все знач-я из некот-й привед-й с-ы вычитов. Док-во. Пусть Х={x1,x2,..xφ(m)} привед-я с-а вычитов по mod m. Тогад х’={ax1, ax2,..axφ(m)} привед-я с-а вычитов по mod m. Проверим 3-е усл-е признака привед-й с-ы: 1) в с-е х’ φ(m) чисел, т.к. вместо х мы можем подст-ть φ(m) чисел; 2) Эти числа Є по mod m разным классам,т.к. вместо х берутся числа из разных классов. В этом случае числа ax (даже ax+b) попарно не сравнимы между собой по mod m.3) ax взаимно просты с mod m. НОД(a,m)=1 по усл-ю. НОД(xi, m)=1, i=1,2… φ(m), т.к. xi взяты из привед-й с-ы вычитов. НОД(axi,m)=1. i=1,2,… φ(m) => с-а х’ обр-т привед-ю с-у вычитов по mod m.

Теорема Эйлера. Если а и m взаимно просты, т.е. НОД(а,m)=1, то аφ(m) ≡1(mod m). Док-во. Восп-ся теоремой: если в лин-ю форму ах вместо х будем подст-ть вычиты из некот-й привед-й с-ы вычитов по mod m, то и лин-я форма пробегает также все знач-я привед-й с-ы вычитов по mod m. Рассм-м привед-ю с-у наим-х полож-х вычитов по mod m: r1,r2,…rk, k=φ(m), тогда ar1,ar2,…ark - также привед-я с-а вычитов. Ґ вычит последней с-ы заменим наим-м положит-м вычитом. ar1≡r1’(mod m), ar2≡r2’(mod m)… ark≡rk’(mod m). Перемножим: ak(r1r2…rk)≡r1’r2’…rk’(mod m) (1). Но r1r2…rk=r1’r2’…rk’. В левой и правой частях стоит произв-е всех вычитов из привед-й с-ы наим-х полож-х вычитов. Эти произв-я взаимно просты с mod m, т.к. Ґ множ-ль с mod m взаимно прост. => ak≡1(mod m), т.к. k= φ(m) => аφ(m) ≡1(mod m)■

Теорема Ферма. Если m=p простое число и НОД(а,р)=1, то ар-1≡1(mod m). Док-во. Если m=p,то φ(p)=p-1, тогда по теор-е Эйлера ар-1≡1(mod m).■ След-е. Для ҐаЄZ, Ґp -простое число, ap≡a(mod m).


Вопрос 16.

Бинарные отнош-я. Отнош-я экв-ти и разбиение на классы. Фактор мн-ва.

Прямое произведение 2-х мн-в: A*B={(a,b)|aЄA,bЄB}. Декартов квадрат A*A={(a,b)|a,bЄA}=A2. Бинарное отнош-е, зад-е на паре мн-в A и B: αA*B. Бинарное отнош-е, зад-е на мн-е A: αA2.

Св-ва бин-х отнош-й: Пусть α бин-я отнош-е опред-е на А, т.е. αА2. 1. α рефлек-о: (ҐαЄА) (аαа). 2. α симмет-о: (Ґa,bЄA) (aαb => bαa). 3. транз-ть: (Ґа,b,cЄA) (aαb ^ bαc => aαc). Бинарное отнош-е α опред-е на мн-ве А наз-ся отнош-м эквивал-ти, если оно реф-но, симмет-но и тран-но. Н-р: 1. А-мн-во прямых на плос-ти, α –отнош-е параллел-ти. 2. Отнош-е подбие фигур на А точек пл-ти.

С-а S={A1,A2,…An} непустых подмн-в мн-ва А наз-ся разбиением мн-ва А на классы, если ҐаЄА попад-т в ! подмн-во из системы S.Тогда –разбиение А на классы, если вып-ся 1)Ai≠Ш, i=1,2,…n 2) A1 A2… An=A 3)AiAj=Ш, i≠j.

Теорема. Ґ разбиению мн-ва А на классы соответствует отношение эквивал-ти. Док-во. Пусть S={A1,A2,…An} разбиение мн-ва А. Определим на А бинар-е отнош-е α т.о.: аαb  a,bЄAi (*). AiЄS. Покажем, что так опред-е отнош-е α явл-ся отнош-м экв-ти, т.е. оно рефл-о, сим-о, тран-о. 1)Из (*) => аαа, т.к. Ґ эл-т нах-ся в 1 подмн-ве с самим собой. 2) Из (*) => b,aЄAi  bαa. aαb => bαa.3)Пусть аαb ^ bαc => a,bЄAi^ b,cЄAj≠Ш, что противоречит требованию 3)разбиения => Ai=Aj. A,bЄAi ^ b,cЄAi => a,cЄAi. аαb ^ bαc => aαc.■ Пусть α отношение эквив-ти опред-е на мн-ве А. Выберем в А все элы, нах-ся в отнош-и α с эл-ми а, образ-е из них мн-во обозн-м [a]. [a]={x|xЄA,xαa}. Мн-во [a] наз-ся смежным классом мн-ва А по отнош-ю эквив-ти α.

Теорема. Если α отнош-е эквив-ти на мн-ве А, то с-а всех смежных классов мн-ва А явл-ся разбиением мн-ва А.Док-во.Пусть α отнош-е эквив-ти на А. Рассм-м смежный класс ҐаЄА, [a]={x|xЄA,xαa}. Покажем, что с-а разлож-я смежных классов обр-т разбиение мн-ва А. Т.к. α рефлек-о, т.е. аαа => [a]≠ Ш. Возьмем произв-й aЄA, aЄ[a] => aЄ[a][b][c]…т.е. А[a][b][c]…Т.к. [a]A, [b]A, [c]A…=>[a][b][c]A. Из этих 2-х включений => [a][b][c]…=A. Покажем, что Ґa,bЄA, aαb(с чертой) => [a][b]=Ш. Предположим: пусть [a][b]≠Ш => сущ-т сЄ[a] ^ cЄ[b] => aαc ^ cαb => но это противоречит усл-ю aαb(с чертой) => Ґa,bЄA, aαb(с чертой) => [a][b]=Ш.■ Мн-во всех смежных классов мн-ва А по отнош-ю эквивал-ти наз-ся фактор-мн-во А по отнош-ю α. Обозн. А|α.


Вопрос 17.

Группа. Прост-е св-ва групп. Подгруппы. Изоморфизмы гомомор-ы групп.

Если А≠Ш, то n-мерной алгеб-й опре-й наз-ся «отношение Аn А, т.е. (α12,…αn)( α12,…αn)ЄAn. Алгеб-й с-й наз-ся не пустое мн-во А, на котором опред-а совокуп-ть алгеб-х опер-й и отнош-й (А,f, p), где А основное мн-во,f совокуп-ть алг-х опер-й, p совокуп-ть отнош-й. Бинар-я опер-я (*) на мн-ве А наз-ся ассоц-й, если (Ґa,b,cЄA) (a*b)*c=a*(b*c). Бин-я опер-я (*) опред-я на А наз-ся комут-й, если (Ґa,bЄA) a*b=b*а. Полугруппой наз-ся с-а (А,*), сост-я из А≠Ш и бин-й опер-и (*) опре-й на А, кот-я ассоц-а. Если (*) доп-о комут-а, то полугр-а наз-ся комут-й или абелевой. Моноидом наз-ся с-а (А,е,*), сост-я из А≠Ш, выд-го эл-та е и бин-й опер-и (*) опре-й на А, если выпол-ся 1) * - ассоц-а, 2) е – нейт-й Эл-т относ-о *. Группой наз-ся с-а G=(G,e,*,’), где G≠Ш, e - выд-й эл-т, *- бинар-я опер-я, ' – унар-я опер-я, причем: 1)* ассоц-а, 2)e- нейт-й эл-т относ-о *,т.е. (ҐaЄA) a*e=e*a=a, 3) (ҐaЄA) (сущ-т a’ЄG) a*a'=a'*a=e. Если * ком-а, то группа абелева. Если * в группе обозн-ть «+», то имеем аддит-ю группу, нейт-й Эл-т – «0», симмет-й для а: (-а)- против-й. Если * обоз-м *(точка), то имеем мультип-ю группу. Св-ва групп. 1) Всякая группа имеет ! нейтр-й эл-т. Док-во. Всякая группа явл-ся моноидом, а в моноиде нейт-й эл-т !. 2) Ґэл-та аЄG сущ-т ! симмет-й Эл-т. 3) (Ґa,bЄG) a*x=b (1) и x*a=b (2) одноз-но раз-ы. Док-во. 1. Рассм-м (1). x0 – реш-е (1),т.е. a*x0=b. x0=е*x0=(a’*a)*x0=a’*(a*x0)=a’*b. x0=a’*b. Этот Эл-т опре-й одно-о, т.к. Ґa одноз-о опред-н a’ и * есть отоб-е. *:A2А, т.е. (a’,b)ЄA2. Одно-м соотв-т Эл-т из мн-ва А. В данном случае x0. (a’,b)x0. Ур-е a*x=b имеет ! реш-е x0=a’*b. 2.Рассм-м (2). (x*a)*a’=b*a’. x*(a*a’)=b*a’. x*e=b*a’. 4) В группе имеет место правило сокр-я a*c=b*c => a=b. c*a=c*b =>a=b 5) (a*b)’=b’*a’. 6) (а’)’=a.

Подмн-во А группы G наз-ся подгруппой этой группы, если оно само явл-ся группой относ-но установ-й на G опер-и. Чтобы установить явл-ся ли подмн-во А группы G группой нужно проверить 2 усл-я: для мульт-й группы: 1. Ґa,bЄA => abЄA 2. ҐaЄA => a-1ЄA.; для аддит-й группы: 1. Ґa,bЄA => a+bЄA 2. ҐaЄA => -aЄA. Группа G и G’ наз-ся изоморфными, если можно установить взаимно одноз-е отобр-е φ: G  G’, G=(G,e,*,’), G’=(G’,e’,*,’), при котором φ(a*b)=φ(a)*φ(b). Группа G наз-ся циклич-й, если все ее Эл-ы могут быть предст-ы в виде целых степеней некоторого ее Эл-та а. Этот Эл-т наз-ся образующим Эл-м.

Произ-е хА, ҐхЄG, A n=kj => n|k.■


Вопрос 18.

Кольца и поля.

Кольцом наз-ся с-а А=(А,0,1,+,-,*), А≠Ш, 0,1 –выд-е Эл-ты, +,* бинар-е опре-и, - унар-я опер-я, если 1) (А,0,+,-) аддит-я абел-я группа, 2) (А,1,*) мульт-й моноид, 3) a(b+c)=ab+ac, (b+c)a=ba+ca, Ґa,b,cЄA. Кольцом наз-ся числ. множ., на котором выполняются три опер-и: слож-е, умнож-е, вычит-е. Св-ва колец. 1). A+b=a => b=0. 2) a+b=0 => b=-a. 3) a*0=0*a=0. Док-во. a*0+ab=a(0+b)=ab. a0+ab = ab => a0 = 0. 0a+ba = a(0+b) = ba. 0a+ba = ba => 0a = 0. 4) a(-b) = (-a)b = -ab. Док-во. a(-b)+ab = a(-b+b) = a0=0. a(-b)+ab = 0 => a(-b) = -ab. 5) (-a)(-b) = ab. Док-во. (-a)(-b) = (-a)(-b)+0 = (-a)(-b)+a(-b)+ab = ((-a)(-b)+a(-b))+ab = (-a+a)(-b)+ab = 0(-b)+ab = 0+ab = a(-b)+ab = 0 => a(-b) = -ab. 6) a(b-c) = ab-ac. Док-во. a(b-c) = a(b+(-c)) = ab+a(-c) = ab-ac. Полем наз-ся коммут-е кольцо, в котором 0≠1 для Ґ Эл-та а≠0 сущ-т обратный Эл-т. Р(Р,0,1,+,-,*) – поле, если 1) (Р,0,1,+,-,*) комут-е кольцо 0≠1. 2) ҐаЄЗ, а≠0 сущ-т а-1ЄР. Если Р – числовое мн-во, то для поля можно дать опред-е. Эл-ты a,bЄA, где А кольцо, наз-ся делителями нуля в кольце, если a≠0, b≠0, но ab=0.

Полем наз. числ множ. на котором выполняются 4 операции: слож, умнож, вычит, деление (кроме деления на 0). Св-ва полей. 1. ab = 1 => a≠0,b = a-1. 2. ac = bc ^ c≠0 => a = b. 3. ab = 0 => a = 0 или b = 0. 4. a≠0 ^ b≠0 => ab≠0 , a/b = ab-1. 5. a/b = c/d  ad = bc. 6. a/b±c/d = (ad±bc)/bd. 7. (a/b)*(c/d) = (ac)/(bd). 8. a/b = (ac)/(bc), c≠0. 9. a/b+(-a/b) = 0. 10. (a/b)*(b/a) = 1.


обозначения вектора буква с апострофом н-п: e’

воп:1 понятие вектора и действия над векторами.

Вектор – направленный отрезок. Нуль вектор – это вектор у которого начало совпадает с концом. Длиной – или модулем вектора называют длину отрезка. Вектор длина которого равна единице измерения называется единичным вектором. Вектор свободен как на плоскости так и в пространстве т.е. его можно перенести в любую точку пространства не меняя не длины не направления.
Два вектора (несколько век.) лежащие на одной прямой или на парралл-ых прямых называются коллинеарными. Коллениарные вектора имеющие одинаковые (разные) направления наз-ся сонаправленными (противоположно направленными).
Два сонаправленных вектора имеющие одинаковые модули называются равными. Два вект. имеющие одинак. модули но противопол. направленные называются равно противоположные.

Действия: Что бы сложить неск. векторов выделяем точку О в неё перенесем начало первого слог. вектора, затем начало второго слог. вектора помещаем в конец первого слог. и т .д. и получаем ломаную линию. Тогда вектор суммы будет вектор соединяющий начало первого с концом последнего слагаемого вектора. (если начало первого и конец последнего слагаемых векторов совпали то сумма равно 0 вектору) Два вектора можно сложить 2 способами: правило треугольника и правило параллелограмма. Сложение векторов коммутативно и ассоциативно( (а+b)+c=a+(b+c) ) . Модуль суммы двух векторов  сумме модулей этих векторов.

Разность: Для нахождения вектора разности а-b уменьшаемый и вычитаемый вектор приводят к общему началу, вектор разн-ти это вектор соединяющий конец вычитаемого с концом уменьшаемого.
Умножение вектора на число: k-число a’*k=p’ вектора a’ и p’ сонаправленны если k>0 и противопол-но направ-ны если k0 называется положительной относит. прямой, а вторая полуплоскость для всех точек которой Ax+By+C0 то точка M1 и нач. координат лежат в одной полуплоскости относительно прямой.

Расположение плоскостей: n1{A1,B1,C1} n2{A2,B2,C2} векторы нормали

1 Плоскости парралельны тогда A1/A2=B1/B2=C1/C2D1/D2

2 Плоскости совпадают тогда A1/A2=B1/B2=C1/C2=D1/D2

3 Плоскости пересекаются под улом  cos=(n1’,n2’)/|n1’|*|n2’|

или cos=(A1A2+B1B2+C1C2)/ A12+B12 +C12A22+B22 +C2

4 Пл-ти ортогональны A1A2+B1B2+C1C2=0

Плоскость разбивает пространство на 2 полупростр, то полупрст. для всех точек которого выпол-ся нер-во: Ax+By+Cz+D>0 называется положительнм относит. плоск, а второе ь для всех точек которого Ax+By+Cz+D0 раз. Подобие с коофю к=1 есть движение


воп 9 : Преобразование подобия

Гомотетия: h0k, c центром о и кооф. к0 наз-ся преобр. пло-ти переводящее каждую точку А ы т.А’ и выполняются: вектор ОА’=k*векторOA (векторы коллинеарны)

Гомотетию можно задать 2 способами: 1 центром и коф-ом к 2центром О и парой точек A ,A’ Уравнения : сист: x’=kx y’=ky

Свойства гомотетии:1.прямая переходит в прямую ей парр-ую 2.сохраняется величина угла. 3.отношение преобразованого отрезка к первоначальному есть |k| 4.отношение двух произвольных отрезков не меняется. док-во: AB и СD AB-A’B’ СВ-С’D’ по сво-ву 3 |A’B’|/|AB|=|k| и |C’D’|/|CD|=|k| прировняем и получим |AB|/|CD|=|A’B’|/|C’D’| 5окружность переходит в окружность 6 Любые две окр. гомотетичны.

Подобие –это преобр. плоскости при котором расстояние между любыми 2 точками изменяется в к >0 раз. Подобие с коофю к=1 есть движение. Mk:A-A’ B-B’ |A’B’|=k|AB| Гомотетия есть частный случай подобия.

Т:Каковы бы нибыли два прямоуг. декартовых репера сущ. ! подобие переводящее первый репер во второй.

уравнения подобия сист: x’=k*(xcos-Eysin)+a y’=k(xsin+Eycos)+b

Т: Преобразование подобия образует группу , (или группу Кляйна).

Фигура F1 называется подобной фигуре F2 если сущест. подобие переводящее F1 в F2.

Свойства подобия:1 Каждая фигура подобна сама себе. 2 Симметричность : если F1~F2 то и F2~F1 3транзитивность F1~F2 а F2~F3 то F1~F3 т.е. отношение подобия есть отношение эквивалентности.

Т:Преобразование подобия есть произведение гомотетии и движения. Док-во: требуется докозать что M=d*h

возьмем гомотетию h c центром О в нач. коор-т и кооф-м к

h0k : A(x,y)-A1(x1,y1) т.е. x1=kx y1=ky (2) d:A1(x1,y1)-A’(x’,y’)

x’=x1cos-Ey1sin+a y’=x1sin+Ey1cos+b рассмотрим произведение d*h: x’=k*xcos-Ek*ysin+a y’=k*xsin+Ek*ycos+b вынесем к и приведем к виду x’=k*(xcos-Eysin)+a y’=k(xsin+Eycos)+b это уравнения подобия M с кооф. к т.е. d*h=Mk ч.т.д.


впо 10: Афинные преобразования плоскости

Пусть точки О,А и В не лежат на одной прямой. Обозначим ОА’=e1’ OB’=e2’ Пусть М произвольная точка. Т.т. векторы e1’ e2’ не колинеарны, то радиус вектор ОМ’точки М можно разложить по этим векторам: ОМ’=xe1’+ye2’. Числа х и у называются афинными кооринатами точки М в системе коо-т, определяемой началом О и базисными векторами e1’ e2’

Т: Всякая пряма может быть задана в афинной системе координат линейным уравнением. Всякое лин. уравнение задает в афин-ой системе коор-т прямую

Преобразование плоскости наз-ся афинным если оно любые три точки M1 M2 M3 лежащие на одной прямой переводит в 3 толчки M1’ M2’ M3’ лежащие на одной прямой и сохраняет их простое соотношение т.е. (M1,M2,M3)=(M1’,M2’,M3’) т.е. расстояние между ними сохраняется.Любое преобразование подобия есть афинное преобразование т.к. оно переводит прямую в прямую сохраняя простое отношение/

Т: всякое афин-е преобразование  сохраняет отношение порядка. т.е если точка В лежит между точками А и С то точка (В) лежит между (А) и (С) Док-во: обознач. (А)=А’ (В)=В’ (С)=С’ предположим противное. Пусть например точка А’ лежит между точками B’ и C’ тогда выполняется равенство |A’C’|/|B’C’|=|AC|/|BC| Но |A’C’|/|B’C’|1 и равенство невозможно. ч.т.д

Т:Пусть А В С и A’ B’ C’ – две тройки точек общего положения (т.е. не лежат на одной прямой) Существует ! аффинное преобр. переводящее точки А, В , С в А’, B’, C’ соответственно.

Т: При всяком афин-м преобр. образом прямой будет прямая, отрезок перейдет в отрезок, луч в луч. Паралл-ые прямые в парал-ые прямые. Сохраняется отношение отрезков лежащих на паралл-ых прямых.

Нетождественное афинное преобразование называется перспективноафинным или родственным преоб-ем если оно имеет по крайне мере две неподвижные точки.

Т:Перспективно-афинное преобразование однозначно определеяется заданием неподвижной прямой и пары соответствующих точек.

Т: Любое афинное преобразование можно представить вв виде композиции (произведения) подобия и и перспективно афинного преобр-я.

Фигуры F1 и F2 называются афинно эквивалентными если они А-эквивалентны т.е.  такое афинноре преобр. которое F1 переводит в F2.

Т:Любые два эллипса (гиперболы, параболы) афинно эквивалентны

Т: При любом афинном преобразовании линия 2 порядка переходит в лин. 2 порядка.


Воп 11: Парралельное проектирование. Изображение фигур на плоскости.

Парал-е проект-е применяется при изображении плоских и пространственных фигур на плоскости.Пусть поектируемая фигура F есть некоторая плоскость  очевидны утверждения:  точка плоск-и  имеет проекцию на .  точка пло-ти  является проекцией некоторой точки из . Если точка М’ есть проекция т.М пл.  в направлении прясой а, то точка М есть проекция точки М’ на пл.  в направлении той же прямой а. Т.о парралельное проектирование есть взаимнооднозначное отображение одной плоскости на другую и обратное отображение также является паррал-ым проектированием. Св-ва: 1При пар-ом проект. плоскости проекция прямой являетс прямая, проек. отрезка отрезок, луча луч, ||ые праямые проект на ||ые прямые.2Сохраняется отношение отрезков лежащих на одной или || прямых.3треугольник можно спроектировать в треуг. подобный любому даному треугольнику.

Т:Паралл-ое проектир. плоск-ти на плоскость можно представить в виде комопзиции перспективно-афинного преобразования и движения.

Т:афинное преобр плоскости может быть представлено в виде композиции паралл. проектир. на некоторую плоскость, движения и преобразования подобия

Парр-е проектир. пространства на плоскость: не является взаимнооднозначным. Т Польке – Шварца. Всякий тетраэдр можно спроектировать в четырехвершинник, подобный днному.

Изображение пространственных фигур: Если задано изображение A’B’C’D’ тетраэдра ABCD то определено изображение любой фигуры. Призма: основания равные n-угольники с || сторонами. Поэтому основание изображается 2 n-угольниками, один из которых получается || переносом другого. Боковые грани изображаются парралелогр-ми. Пирамида: оснвоание n-угольной пирамиды изображается n угольником, боковые грани треугольниками.

Изображение сечений многогранников.

Метод Монжа: Основная идея метода состоит в том что положение любой точки пространства определяется ее ортогональными проекциями на две взаимно перпендикулярные плоскости 1 и 2 Повернем пл 1 вокруг прямой х по которой пересекаются 1 и 2 до совпадения с 2. После этого поворота плоскости изобразятся на одном чертеже называемом эпюром. Плоскости делят пространство на 4 квадранта и в зависимотсти от того в каком квадранте находится точка ее проекции а эпюре находятся выше или ниже оси проекции


воп 12: Системы Аксиом школьно курса.

Аксиоматика Колмогорова: Состоит из 5 групп: 1Аксиомы принадлежности 2 Аксиомы расстояния 3 Акс. порядка 4 Акс. подвижности 5 Акс парралельности. Основные объекты: точка, прямая, неотрицательные величины. основные отношения: отн. принадлежности точки прямой и сопоставление каждой паре неотрицательной скалярной величины – расстояния между точками. группы аксиом 1,4,5 это аксиоматика метрического пространства.

Аскиоматика Погорелова: Погорелова еще больше расширяет аксиоматику и вводит в нее не только аксиомы измерения отрезков, но и аксиомы измерения углов, при этом соспоставляя в аксиомах измерения отрезкам и углам числа не делая оговорок о зависимости этих чисел от выбора едениц измерения. Необходимые уточнения были даны Александровым. основные понятия : точка прямаяю отношения: принадлежность, лежать между, расстояние между точками(длина отрезка), градусная мера угла. Группы: 1Аксиомы принадлежности 2Акс. Порядка 3Аксиомы меры для отрезков и углов4Аксиома  треугольника равного данному.

Следствия из 4: На данном луче от его начала можно отложить отрезок, равный данному отрезку, и при том только один. От данного луча в заданную полуплоскость с границей содержащей данный луч, можно отложить угол, равный данному углу и при том только один.


Информация о работе «Шпаргалки по геометрии, алгебре, педагогике, методике математики (ИГПИ)»
Раздел: Математика
Количество знаков с пробелами: 330445
Количество таблиц: 3
Количество изображений: 30

0 комментариев


Наверх