4. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ Введение

 

Эффективность производства, его технический прогресс, качество выпускаемой продукции во многом зависят от опережающего развития производства нового оборудования, машин, станков, аппаратов, от всемирного внедрения методов технико-экономического развития и анализа, обеспечивающих решение технических вопросов и экономическую эффективность технологических разработок.

Ускорение НТП в машиностроении требует скорейшего внедрения новых методов упрочнения рабочих поверхностей инструмента, технологической оснастки, деталей и механизмов, работающих с большими нагрузками.

Необходим постоянный научный поиск новых и доработка и усовершенствование уже испытанных методов нанесения защитных и упрочняющих покрытий, которые при незначительно увеличивающейся стоимости инструмента, приспособления и т.д., дают немалый экономический эффект, вследствие многократного увеличения срока службы.

 

4.1. Анализ технологичности конструкции детали «Кулачёк»

Технологическиё анализ конструкции детали обеспечивает улучшение технико-экономических показателей разрабатываемого технологического процесса.

Основные задачи, решаемые при анализе технологичности конструкции обрабатываемой детали сводятся к возможному уменьшению трудоёмкости и металлоёмкости, возможности обработки высокопроизводительными методами, что позволяет снизить себестоимость её изготовления без ущерба для служебного назначения.

Качественные оценки технологичности конструкции:

1)               Форма, точность размеров и шероховатость поверхности, с точки зрения выбора метода получения заготовки и назначения поверхностей, подлежащих обработке резанием.

Используя штампованную заготовку, форма которой будет приближена к форме готовой детали, можно увеличить коэффициент использования металла.

2)               Форма, точность размеров и шероховатость поверхности, подлежащих обработке резанием, с точки зрения возможности применения простых и производительных схем обработки.

Кулачок по наружному профилю имеет сложную конструкцию. Поэтому необходимо применение специальных станков: копировально – фрезерного или фрезерного станка с числовым программным управлением.

3)               Целесообразность термической обработки для получения требуемых прочностных характеристик детали.

Деталь в процессе эксплуатации работает на истирание по профилю и внутреннему диаметру Æ 60Н7, по этому рабочие поверхности можно подвергнуть цементации с последующей закалкой 57 .. 63 HRC ТВЧ.

Определение типа производства

Годовая производственная программа N = 1000 штук в год, масса детали составляет 2,7 кг. Согласно рекомендациям [11] устанавливаем серийный тип производства.

В таком производстве изготовление деталей осуществляется партиями, запускаемыми в производство одновременно. Это обеспечивает повторяемость операций и возможность широкого использования специализированного и специального оборудования, оснастки.

Величина партии деталей определяется

,

где t – число дней, на которые необходимо иметь запас деталей на складе при 5 – дневной 2-х сменной рабочей недели для обеспечения непрерывной сборки;

 - число рабочих дней в году.

t = 8 – 10 дней [11]  = 253 дня [11]

,

Выбор способа получения заготовки. Для условий серийного производства выбираем в качестве заготовки штамповку на горизонтально кованой машине II класса точности. [1]

Рассчитаем массу заготовки

mз = γ * vз, где

γ = 7,814 г/см3 – плотность металла [7]

vз – Объём заготовки, см3

vз = 3,14 * 8,02 * 2,6 + 3,14 * 6,052 * 0,6 – 3,14 * 2,82 *3,2 = 512,7 см3

mз = γ * vз = 7,8 * 512,7 = 3998 гр = 3,998 кг

Коэффициент использования металла

Ким = mд / mз = 2,7 / 3,998 = 0,675

Себестоимость заготовки

Sзаг = (С / 1000 * mз * Кт * Кс * Кв * Км * Кп) – (mз -  mд) * Sотк / 1000, руб [5]

Ci = 18900 руб/т стоимость 1 т заготовки [5]

Sотх = 1788 руб/т стоимость 1 т отходов

Кт, Кс, Кв, Км, Кп – коэффициенты, зависящие от класса точности, группы сложности, массы, марки материала и объёма производства заготовки.

Кт = 1; Кс = 0,87; Кв = 1,14; Км = 1,18; Кп = 1

Рис. 4.1 Эскиз штамповки


Sзаг = (18900/1000 * 3,998 * 1 * 0,87 * 1,14 * 1,18 * 1,0) – (3,998 – 2,7) * 1788/1000 = 86,2

Маршрутный технологический процесс

000 Заготовительная

Штамповка на ГКМ и зачистка от окалины

005 Карусельно – фрезерная

1 переход фрезеровать торец бобышки Æ130

010 Токарная

А Установить в 3-х кулачковый патрон

1 переход подрезать торец начерно

2 переход подрезать торец начисто

3 переход расточить начерно

4 переход расточить начисто

5 переход снять фаску 1 х 450

015 Сверлильная

А Установить в приспособление

1 переход снять фаску 1 х 450

017 Сверлильная

1 переход центровать 4 отверстия

2 переход сверлить и снять фаску

3 переход нарезать резьбу М8-6q в 4 отверстиях

020 Копировально – фрезерная

А Установить на жёсткую оправку Æ60Н7

1 переход фрезеровать наружный контур

025 Слесарная доводка профиля Ra = 0,8 мкм

Расчёт припуска +0,030

Поверхность Æ60Н7

Отверстие обрабатывается черновым растачиванием Н9 + 0,074

Отверстие обрабатывается чистовым растачиванием Н7 + 0,030

Точность заготовки +1,2 - 0,7 [10]

Припуск рассчитываем аналитическим методом [10]

 - высота микронеровностей, оставшихся после выполнения предыдущего перехода, мкм

 - дефектный слой после предыдущего перехода, мкм

 - суммарное значение пространственных отклонений после предыдущего перехода, мкм

 - погрешность установки на выполняемом переходе, мкм

Черновое растачивание

 = 150 мккм;  = 200 мкм;

 = ,  = 300 мкм [10]

 - погрешность смещения отверстия, мкм

 - эксцентриситет отверстия, мкм

 = 450 мкм;  = 500 мкм; [10]

 = =675 мкм

Lt, min = 21150 + 200 + =2 * 1090 мкм = 2180 = 2,2 мм

Чистовое растачивание

 = 50 мккм;  = 50 мкм; [10]

 = 0,06 * = 0,06 * 675 = 40 мкм

 = 300 мкм [10]

Lt, min = 2150 + 50 + =2 * 402 мкм = 804 мкм = 0,8 мм

Таблица 4.1. Межоперационные размеры

Технолог. переходы Элементы припуска, мкм Расчётный припуск, мм Допуск, мм Расчётный размер, мм Предельные размеры, мм Прицельные рипуска, мм
Rz T D max D min

LZпрmax

LZпрmin

Заготовка 150 200 675 - - 1,9 57,03 57,03 55,13 - -
Черновое растачивание 50 50 40 300 2,2 0,074 59,23 59,23 59,156 4,026 2,2
Чистовое растачивание 20 25 - 300 0,8 0,030 60,030 60,030 60,000 0,844 0,8

Строим схему полей допусков и межоперационных размеров

Рис. 4.2. Схема полей допусков и межоперационных размеров

 

 

 

 

 

 


4.2. Выбор оборудования, режущего, вспомогательного и мерительного инструментов

005 Карусельно-фрезерная

Станок карусельно-фрезерный 621 м [4]

Конус отверстия шпинделя №3

прицелы подач: 100 – 1250 мм/мин

прицелы чисел оборотов шпинделя: 630 – 1000 мин -1

Режущий инструмент

фреза торцевая с механическим креплением пятигранных твёрдосплавных пластин

2214-0311; D=140 мм, d=60 мм, z = 12

Вспомогательный инструмент

Втулка переходная с конусностью 7 : 24 ГОСТ 13791-78

Мерительный инструмент

Штангенциркуль ГОСТ 166-75

010 Токарная

Токарно-револьверный патронный полуавтомат 1416 [5]

Тип револьверной головки – 4-х позиционный крестообразный

Режущий инструмент

1) резец подрезной с Т15К6 НхВ = 25 * 16; ГОСТ 18871-73

2) резец расточной для сквозных отверстий НхВ = 16 * 16; ГОСТ 18882-73

3) резец расточной для снятия фаски

015 Сверлильная

Вертикально сверлильный станок 2Г175  [ ]

Режущий инструмент: зенковка 2L = 90; ГОСТ 6694-73

020 Копировально-фрезерная

Копировально-фрезерный станок 6М13К [4]

Конус отверстия шпинделя №3

Число подач: 20-315 мм/мин

Пределы чисел оборотов шпинделя: 40 – 2000 мин -1

Режущий инструмент:

Концевая фреза Æ25; t=4  специальная

Вспомогательный инструмент: втулка переходная ГОСТ 13791-75

Мерительный инструмент: шаблон для профиля специальный

017 Сверлильная

Вертикально - сверлильный станок с числовым программным управлением 2Р135 Æ 2 – 1 [4]

Пределы подач: 10 – 500 мм/мин

Число подач: шпинделя – 18

Пределы частот вращения шпинделя 45 – 2000 мин -1

Число скоростей шпинделя – 12

Режущий инструмент

Сверло центровочное Æ 2,5 ГОСТО 14952-75 [4]

сверло – зенковка Æ 7

метчик М8 ГОСТ 3266-81

Вспомогательный инструмент:

патрон для метчиков

втулка переходная

Мерительный инструмент: калибр-пробка резьбовая М8-6Н


Информация о работе «Разработка технологического процесса упрочнения кулачка главного вала с использованием лазерного излучения»
Раздел: Металлургия
Количество знаков с пробелами: 121280
Количество таблиц: 17
Количество изображений: 0

Похожие работы

Скачать
155220
32
15

... форме, отражены в формуле (10.9) и сведены в соответствующие графы чертежа. , (10.9) где, ТАi – технологический допуск. 11. Планировка механического участка Деталь “шпиндель” (рис.1.1) является сборочной единицей головки 4-хшпиндельной комбинированной, которая в свою очередь входит в сборочный узел автоматической линии для обработки ...

Скачать
305550
1
104

... - дальнейшее развитие, совершенствование и разработка новых технологических методов обработки заготовок деталей машин, применение новых конструкционных материалов и повышение качества обработки деталей машин. Наряду с обработкой резанием применяют методы обработки пластическим деформированием, с использованием химической, электрической, световой, лучевой и других видов энергии. Классификация ...

Скачать
120777
17
6

... удельный вес, всего 5-7% (ГПС распространены в Японии, США, Швеции и др.) Основным конструктивным элементом ГПС является ГПМ - гибкий производственный модуль - единица технолог. Оборудования, функционирующая автоматически, обладающая свойством автоматизированной переналадки и имеющая возможность встраивания в ГПС. Разновидностью ГПМ является РТК - роботизированный технологический комплекс ( ...

0 комментариев


Наверх