5. Производная в приближенных вычислениях

5-1. Интерполяция

Интерполяцией называется приближенное вычисление значений функции по нескольким данным ее значениям. Интерполяция широко используется в картографии, геологии, экономике и других науках. Самым простым вариантом интерполяции является форма Лагранжа, но когда узловых точек много и интервалы между ними велики, либо требуется получить функцию, кривизна которой минимальна то прибегают к сплайн-интерполяции, дающей бóльшую точность.

Пусть Kn - система узловых точек a = x0 < x1 <…< xn = b. Функция Sk(x) называется сплайн-функцией Sk(x) степени k≥0 на Kn, если

а) Sk(x) є Ck-1([a, b])

б) Sk(x) - многочлен степени не большей k

Сплайн-функция Ŝk(x) є Sk(Kn) называется интерполирующей сплайн-функцией, если Ŝk(xj) = f(xj) для j = 0,1,…,n

В приложениях часто бывает достаточно выбрать k=3 и применить т. н. кубическую интерполяцию.

Т. к. s(x) на каждом частичном интервале есть многочлен третьей степени, то для x є [xj-1 ,xj]

Здесь s2j, cj1, cj0 неизвестны для j = 1, 2, …, n

Последние исключаются в силу требования s(xj) = yj:Дифференцируя эту функцию и учитывая, что s'(x) на всем интервале и, следовательно, в частности, в узлах должна быть непрерывна, окончательно получаем систему уравнений:

относительно n+1 неизвестных s20, s21,…, s2n. Для однозначного их определения в зависимости от задачи добавляются еще два уравнения:

 

Нормальный случай(N):

Периодический случай(P) (т. е. f(x+(xn-x0))=f(x)):

Заданное сглаживание на границах:

Пример: сплайн-интерполяция функции f(x)=sin x, n=4.

Функция периодическая, поэтому используем случай P.

j

xj

yj

hj

yj-yj-1

0 0 0 π/2 1
1 π/2 1 π/2 -1
2 π 0 π/2 -1
3 3π/2 -1 π/2 1
4 0

Сплайн-функция получается такая:

 

5-2. Формула Тейлора

Разложение функций в бесконечные ряды позволяет получить значение функции в данной точке с любой точностью. Этот прием широко используется в программировании и других дисциплинах

Говорят, что функция разлагается на данном промежутке в степенной ряд, если существует такой степенной ряд a0 + a1(x - a) + a2(x - a)2 + … + an(x - a)n + …, который на этом промежутке сходится к данной функции. Можно доказать, что это разложение единственно:

Пусть функция f(x) бесконечно дифференцируема в точке a. Степенной ряд вида

называется рядом Тейлора для функции f(x), записанным по степеням разности (x - a). Вообще, чтобы ряд Тейлора сходился к f(x) необходимо и достаточно, чтобы остаточный член ряда стремился к 0. При a = 0 ряд Тейлора обычно называют рядом Маклорена.

С помощью ряда Маклорена можно получить простые разложения элементарных функций:

5-3. Приближенные вычисления

Часто бывает, что функцию f(x) и ее производную легко вычислить при x = a, а для значений x, близких к a, непосредственное вычисление функции затруднительно. Тогда пользуются приближенной формулой, полученной с помощью формулы Тейлора:

Пример: Извлечь квадратный корень из 3654

Решение: , x0=3654. Легко вычисляются значения f(x) и  при x = 3600. Формула при a = 3600, b=54 дает:

С помощью этой формулы можно получить несколько удобных формул для приближенных вычислений:


Производная в школьном курсе алгебры

1. Структура учебников

Колмогоров:

§4. Производная

12. Приращение функции

13. Понятие о производной

14. Понятия о непрерывности и предельном переходе

15. Правила вычисления производных

16. Производная сложной функции

17. Производные тригонометрических функций

§5. Применение непрерывности и производной

18. Применения непрерывности

19. Касательная к графику функции

20. Приближенные вычисления

21. Приоизводная в физике и технике

§6. Применение производной к исследованию функций

22. Признак возрастания (убывания) функции

23. Критические точки функции, максимумы и минимумы

24. Примеры применения производной к исследованию функции

25. Наибольшее и наименьшее значения функции

Алимов:

Глава V. Производная и ее применение

§22. Производная

§23. Производная степенной функции

§24. Правила дифференцирования

§25. Производные некоторых элементарных функций

§26. Геометрический смысл производной

Глава VI. Применение производной к исследованию функций

§27. Возрастание и убывание функции

§28. Экстремумы функции

§29. Применение производной к построению графиков функции

§30. Наибольшее и наименьшее значения функции

Башмаков:

Глава II. Производная и ее применение

Вводная беседа

Механический смысл производной

Геометрический смысл производной

Определение производной

Предельные переходы

§1. Вычисление производной

Схема вычисления производной

Правила дифференцирования

Производная степени

Линейная замена аргумента

§2. Исследование функций с помощью производной

Связь свойств функции и ее производной

Особые точки

Решение задач

Построение графика функции

§3. Приложения производной

Скорость и ускорение

Скорость криволинейного движения

Дифференциал

Дифференциал в физике

Задачи на максимум и минимум

Приближенные формулы

 


Информация о работе «Производная в курсе алгебры средней школы»
Раздел: Педагогика
Количество знаков с пробелами: 29087
Количество таблиц: 6
Количество изображений: 0

Похожие работы

Скачать
108758
0
1

... учащихся, школьную документацию, сделать выводы о степени усвоения данного понятия. Подвести итог об исследовании особенностей математического мышления и процесса формирования понятия комплексного числа. Описание методов. Диагностические: I этап. Беседа проводилась с учителем математики, которая в 10Є классе преподает алгебру и геометрию. Беседа состоялась по истечении некоторого времени с начала ...

Скачать
42700
6
14

... детальный разбор этого материала при активной работе учащихся. Тщательно рассматриваются все определения, прорешиваются примеры – идет усвоение нового материала.   2.2 Методика введения показательной функции   Изучение темы «Показательная функция» в курсе алгебры и начала анализа предусматривает знакомство учащихся с вопросами: Обобщение понятия о степени; понятие о степени с иррациональным ...

Скачать
41919
0
0

... движение. Глава 3. развитие понятия функции в школьном курсе физике. §3.1. Функция как важнейшее звено межпредметных связей. В общей системе теоретических знаний учащихся по физике и математике в средней школе большое место занимает понятие «функция». Оно имеет познавательное и мировоззренческое значение и играет важную роль в реализации межпредметных связей [13]. Функция является одним ...

Скачать
89437
1
28

... сформулированной гипотезы необходимо было решить следующие задачи: 1.  Выявить роль тригонометрических уравнений и неравенств при обучении математике; 2.  Разработать методику формирования умений решать тригонометрические уравнения и неравенства, направленную на развитие тригонометрических представлений; 3.  Экспериментально проверить эффективность разработанной методики. Для решения ...

0 комментариев


Наверх