7. РАСЧЁТ ТОКОВ КОРОТКОГО ЗАМЫКАНИЯ

Токи КЗ рассчитываются на линейных вводах высшего напряжения трансформатора ППЭ (К-1), на секциях шин 6 кВ ППЭ (К-2), на шинах 0,4 кВ ТП4 (К-3). Исходная схема для расчёта токов КЗ представлена на рисунке 9, а схемы замещения — на рисунке 10 для расчёта токов КЗ выше 1000 В, на рисунке 11 для расчёта токов КЗ ниже 1000 В.

Расчёт токов КЗ в точке К-1- К-4 проводим в относительных единицах. Для точки К-5 расчёт будем проводить в именованных единицах без учёта системы, так как система большой мощности, и её можно считать источником питания с неизменной эдс, и нулевым внутренним сопротивлением. Для точки К-2, К-3 и К-4 будем учитывать подпитку от электродвигателей.




7.1. Расчёт тока КЗ в точке К-1

За базисную мощность примем мощность системы: Sб= Sc=1500 MBA. Базисное напряжение: Uб1=115 кВ.

Базисный ток:

Параметры схемы замещения:

 Хс=0,6 о.е. согласно исходных данных;

где Хо=0,444 — удельное сопротивление ВЛЭП, Ом/км;

L — длина ВЛЭП, км.

Сопротивление петли КЗ в точке К-1:

XK-1=XС+XВЛ=0,6+0,241=0,841 о.е

Периодическая составляющая тока трёхфазного КЗ в точке К-1:

Периодическая составляющая тока двухфазного КЗ в точке К-1:

Постоянная времени цепи КЗ Та=0,05 с, ударный коэффициент куд=1,8 [3]

Ударный ток в точке К-1:

7. 2. Расчёт тока КЗ в точке К-2

 Базисное напряжение: Uб2=6,3 кВ.

Базисный ток:

Сопротивление трансформатора ТРДН-10000/1 10:

Сопротивление петли КЗ в точке К-2:

XK-2=XK-1+XT=0,841+15,75=16,59 о.е.

Периодическая составляющая тока КЗ в точке К-2:

 

Учтём подпитку от двигателей.

Сопротивление СД, расположенного в цехе №1:

где Х"d=0,2 — сверхпереходное сопротивление двигателя согласно [3], о.е. Сопротивление КЛЭП, питающей СД цеха №1:

Cуммарное сопротивление СД и КЛЭП:

.

Ток подпитки от двигателя:

Сопротивление от двигателя расположенного в цехе №3:

 

Сопративление КЛЭП питающего АД:

Ток подпитки от двигателя:

Сопротивление СД цеха №22:

 

Суммарное сопротивление КЛЭП питающего СД :

Сопротивление КЛЭП питающего РП-2, сечением F=240 мм2:

 

сопротивление КЛЭП питающего СД , сечением F=25 мм 2 :

Суммарное сопротивление КЛЭП и СД:


Ток подпитки от СД:

Периодическая составляющая тока КЗ в точке К-2 с учётом подпитки от ЭД:

 ;

двух фазный ток КЗ в точке К-2:

;

Постоянная времени цепи КЗ Та=0,12с, ударный коэффициент куд=1,92 [3].

Ударный ток в точке К-2:

.

7.3. Расчёт тока КЗ в точке К-3

Расчёт тока КЗ в точке К-3 с учётом подпитки от электродвигателей.

Сопротивление КЛЭП ГПП-РП1:

,

,

суммарное спротивление до точки К-3:

Периодическая составляющая тока КЗ в точке К-3

.

Периодическая составляющая тока КЗв точке К-3 с учётом подпитки от ЭД :

Двухфазный ток КЗ в точке К-3:

.

Ударный ток в точке К-3:

  Расчёт токов КЗ в точке К-4 с учётом подпитки от ЭД.

Сопротивление КЛЭП ГПП-РП2 : Х=2,8 о.е, r=5,2 о.е.

Суммарное сопротивление до точки К-4:

Периодическая составляющая тока КЗ в точке К-4:

;

Периодическая составляющая тока КЗ в точке К-4 с учётом подпитки от ЭД:

.

Двухфазный ток КЗ в точке К-4: .

Ударный ток КЗ в точке К-4: .

Расчёт тока КЗ в точке К-5

Расчёт тока КЗ в точке К-5 проведём в именованных еденицах.

Определим параметры схемы замещения.

Сопротивление трансформатора ТМЗ-400: Rт=5,5Ом; Xт=17,1Ом.

Расчётный ток :

где : Кзпар–загрузка трансформатора в послеаврийном режиме.

.

Выбираем трансформаторы тока типа ТШЛП –10 У3 с nт=1000/5.

Сопротивление трансформаторов тока: Rта=0,05 мОм; Xта=0,07 мОм [3].

По условиям выбора Uн≥Uн сети.=0,38кВ, Iн≥Iр.max=.

Выбираем автомат типа АВМ 10Н, Uн=0,38Кв, Iн=1000А, Iн.откл=20кА.

Сопротивление автомата RА=0,25мОм, XА=0,1мОм [3].

Переходное сопротивление автомата Rк=0,08мОм [3].

Сопротивления алюминиевых шин 60х6 с Iдоп=870А, l=3м, аср=60мм,

Rш=R0·l=0,034·3=0,102мОм, Xш=X0·l=0.016·3=0.048 мОм.

R'Σ=RT+RTA+RA+RK+RШ=5,5+0,25+0,05+0,08+0,102=5,982 мОм;

XΣ=XТ+XТА+XА+XШ=17,1+0,07+0,1+0,048=17,31мОм.

Сопротивление цепи КЗ без учёта сопротивления дуги:

;

Сопротивление дуги Rд в месте КЗ принимается равным:  

где Uд=Eд·lд

где Ед– напряжённость в стволе дуги , В/мм;

lд– длина дуги, мм;

Iк0–ток КЗ в месте повреждения, рассчитанный без учёта дуги, кА.

При Iк0>1000А Ед=1,6 В/м.

Длина дуги определяется в зависимости от расстояния ’а’ между фазами проводников в месте КЗ.

Из [3] для КТП с трансформаторами мощностью 400 кВА а=60 мм.

>1000А, следовательно ЕД=1,6 В/мм.

Тогда сопротивление дуги

Суммарное активное сопротивление будет равно:

;

Полное сопротивление цепи КЗ:  

Переодическая составляющая тока трёхфазного КЗ в точке К-5:

;

;

Ударный ток в точке К-5 равен: .

Результаты рассчётов токов КЗ сведены в таблицу 14

Точка КЗ

IK-i(3), кА

IK-i(2), кА

Та, с

Куд.

Iуд К-i,кА

K-1 8,91 7,71 0,05 1,8 22,68
K-2 9,91 8,58 0,12 1,92 26,9
K-3 9,15 7,92 0,12 1,92 24,77
K-4 8,55 7,4 0,12 1,92 23,21
K-5 9,85 0,0039 1,079 15,03

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8. ВЫБОР ЭЛЕКТРИЧЕСКИХ АППАРАТОВ

8.1. Выбор аппаратов напряжением 11О кВ

 Выберем выключатель 110 кВ.

Условия его выбора:

1. по номинальному напряжению;

2. по номинальному длительному току. Условия проверки выбранного выключателя:

1. проверка на электродинамическую стойкость:

1.1. по предельному периодическому току;

1.2. по ударному току КЗ;

2. проверка на включающую способность:

2.1. по предельному периодическому току;

2.2. по ударному току КЗ;

3. проверка на отключающую способность:

3.1. номинальному периодическому току отключения;

3.2. номинальному апериодическому току отключения;

4. проверка на термическую стойкость.

Расчётные данные сети:

расчётный ток послеаварийного режима IР=78А был найден в пункте 5.3. по формуле(5.3.1);

расчётное время:

τ=tрз+tсв, (8.1.1)
где tрз — время срабатывания релейной защиты (обычно берётся минимальное значение); вданном случае для первой ступени селективности tp3=0,01, с;

tсв — собственное время отключения выключателя (в данный момент пока неизвестно); действующее значение периодической составляющей начального тока короткого замыкания 1по=8,91 кА было рассчитано в пункте 7.1.;

периодическая составляющая тока короткого замыкания в момент расхождения контактов вы­ключателя Iпτ вследствие неизменности во времени тока КЗ принимается равной периодиче­ской составляющей начального тока З: Iпτ=Iп0=8,91 кА;

апериодическая составляющая полного тока КЗ в момент расхождения контактов выключателя определяется по выражению:

iаτ= (8.1.2)

и будет определено позже;

расчётное выражение для проверки выбранного выключателя по апериодической составляю­щей полного тока КЗ:

 (8.1.3)

расчётный импульс квадратичного тока КЗ:

(8.1.4)

будет также определён позже.

Согласно условиям выбора из [8] выбираем выключатель ВМТ-110Б-20/1000УХЛ1 со следующими каталожными данными: Uном=110 кВ; IHOM=1000 A; Iн откл= 20 кА; β=25%; i пр скв=52 кА; Iпрскв=20 кА; iн вкл= 52 кА; Iн вкл=20 кА; IТ=20 кА; tT=3 с; tCB=0,05 с. Определим оставшиеся характеристики сети: Расчётное время по формуле (8.1.1): τ=tp3 + tCB=0,01+0,05=0,06 с;

Апериодическая составляющая полного тока КЗ в момент расхождения контактов выключателя по формуле (8.1.2): iаτ=

Расчётное выражение согласно формуле (8.1.3): ;

Расчётный импульс квадратичного тока КЗ по формуле (8.1.4):

Расчётные данные выбранного выключателя:

проверка выбранного выключателя по апериодической составляющей полного тока КЗ:  (8.1.5)



проверка по термической стойкости:

BK=IT2·tT (8.1.6)
Вк=202·3=1200 кА2·с.
Выбор и проверка выключателя представлены в таблице 15.

Выберем разъединитель 110 кВ.

Условия его выбора:

1. по номинальному напряжению;

2. по номинальному длительному току.

Условия проверки выбранного разъединителя:

1. проверка на электродинамическую стойкость;

2. проверка на термическую стойкость.

Для комплектной трансформаторной подстанции блочного типа КТПБ-110/6-104 тип разъединителя согласно [8] — РНДЗ.2-110/1000 или РНДЗ-16-110/1000.

Согласно условиям выбора с учётом вышесказанного из [8] выбираем разъединитель РНДЗ.2-110/1000 У1 со следующими каталожными данными: ином=110 кВ; 1НОМ=1000 А; 1,1рскв= =80 кА; 1Т=31,5 кА; tT=4 с.

Расчётные данные выбранного разъединителя: термическая стойкость: BK=IT2·tT=31,52·4=3969 кА2·с.

 Выбор и проверка разъединителя представлены в таблице 15.

Таблица 15. Выбор аппаратов напряжением 110 кВ

Условия выбора (проверки) Данные сети Выключатель Разъединитель
Uсети≤Uном 110 110 110

Iр≤Iном

78 1000 1000

Iпо≤Iпр скв

8,91 20кА

Iуд≤iпр скв

22.68 52

Iп0≤Iн.вкл

8,91 52

iуд≤iн.вкл

22,68 52 80

Iпτ≤Iн.откл

8,91 20

16,34 35,25

Вк < IT2'·tT

8.73 кА2·с

1200 кА2·с

3969 кА2·с



Информация о работе «Электроснабжение автомобильного завода»
Раздел: Предпринимательство
Количество знаков с пробелами: 97804
Количество таблиц: 35
Количество изображений: 0

Похожие работы

Скачать
103572
49
22

... вариантов внешнего электроснабжения 2.1 Выбор напряжения системы внешнего электроснабжения Для получения наиболее экономичного варианта электроснабжения предприятия в целом, напряжение каждого звена системы электроснабжения предприятия должно выбираться с учётом напряжения смежных звеньев. Выбор напряжений основывается на сравнении технико-экономических показаний различных вариантов. В ...

Скачать
129027
5
16

... разных этапах производства (потребления) электроэнергии. Основная цель создания таких систем – дальнейшеё повышение эффективности технических и программных средств автоматизации и диспетчеризации СЭС для улучшения технико-экономических показателей и повышения качества и надёжности электроснабжения ПП. Реформирование электроэнергетики России требует создания полномасштабных иерархических систем ...

Скачать
276314
87
37

... 1798181,5 - - - - Всего сметная стоимость 39868706 1820139 2511253 295369 - 33869 5280 Объектная смета на строительство завода цинкования мелкоразмерных конструкций Результат сметных расчетов по общестроительным, санитарно-техническим, электрическим работам сводятся в смету на объект, которая составляется ...

Скачать
125619
17
5

... или двигателя. ·  Местное управление – это управление приводом выключателя, разъединителя и другой аппаратуры непосредственно на месте. ·  Автоматическое управление – его используют в системе электроснабжения предприятий с большой потребляемой мощностью. Автоматическое управление осуществляется с помощью вычислительных машин управления ВМУ. Информация, поступающая в ВМУ, обрабатывается и ...

0 комментариев


Наверх