2. АППРОКСИМАЦИЯ. МЕТОД НАИМЕНЬШИХ КВАДРАТОВ

2.1. ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Исходя из постановки задачи, нужно аппроксимировать полученное в п.1. решение ( Таблица 1. ) параболой методом наименьших квадратов, т.е. нужно найти функцию, в данном случае параболу, которая в точках X ( I ) принимала бы значения, как можно более близкие к значениям Y ( I ). Парабола является функцией с тремя параметрами: F (x) = ax2 + bx + c

Сумма квадратов разностей значений функции и решений дифференциального уравнения (Таблица 1.) должна быть минимальной, т.е.:

( ax2 + bx + c - yi )2 => min

Функция будет иметь минимум, когда все частные производные равны нулю.

DF / da = 0, dF / db = 0, dF / dc = 0

После преобразований получим систему уравнений:

a11a + a12b + a13c = b1

a21a + a22b + a23c = b2

a31a + a32b + a33c = b3

где a11 =  , a12 = a21 =  , a13 = a22 = a31 = , a23 = a32 =xi , a33 = n + 1

b1 = yi, b2 =xiyi, b3 =yi.

2.2. РУЧНОЙ РАСЧЁТ КОЭФФИЦИЕНТОВ СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ

Рассчитаем коэффициенты системы трёх линейных уравнений по формулам, взятым из п.2.2.:

а11 = 0.74 + 0.84 + 0.94 + 1.04 + 1.14 + 1.24 + 1.34 + 1.44 + 1.54 + 1.64 + 1.74 = 32.5094

а12 = а21 = 0.73 + 0.83 + 0.93 + 1.03 + 1.13 + 1.23 + 1.33 + 1.43 + 1.53 + 1.63 + 1.73 = 22.9680

а13 = а22 = а31 = 0.72 + 0.82 + 0.92 + 1.02 + 1.12 + 1.22 + 1.32 +1.42+1.52+1.62+1.72 = 16.9400

а23 = а32 = 0.7 + 0.8 + 0.9 + 1 + 1.1 + 1.2 + 1.3 + 1.4 + 1.5 + 1.6 + 1.7 = 13.2000

а33 = n + 1 = 11

b1 = 2.1 * 0.72 + 2.09763 * 0.82 + 2.105547 * 0.92 + 2.125049 * 1.02 + 2.157721 * 1.12 + 2.205613 * 1.22 + 2.271475 * 1.32 + 2.359045 * 1.42 + 2.473328 * 1.52 + 2.620626 * 1.62 + 2.807662 * 1.72 = 40.83941

b2 = 2.1 * 0.7+ 2.09763 * 0.8+ 2.105547 * 0.9+ 2.125049 * 1.0+ 2.157721 * 1.1+ 2.205613 * 1.2+ 2.271475 * 1.3+ 2.359045 * 1.4+ 2.473328 * 1.5+ 2.620626 * 1.6+ 2.807662 * 1.7 = 31.119972

b3 = 2.1 + 2.09763 + 2.105547 + 2.125049 + 2.157721 + 2.205613 + 2.271475 + 2.359045 + 2.473328 + 2.620626 + 2.807662 = 25.3237

Получим систему уравнений:

32.5094a + 22.968b + 16.94c = 40.83941

22.968a + 16.94b + 13.2c = 31.119972

16.94a + 13.2b + 11c = 25.3237

Теперь нужно решить эту систему методом Гаусса и найти коэффициенты a,b,c.

3. РЕШЕНИЕ СИСТЕМЫ УРАВНЕНИЙ МЕТОДОМ ГАУССА

Суть этого метода состоит в том, что систему линейных уравнений преобразуют к системе с треугольной матрицей, а потом решают уравнения, начиная с последнего.

Решим систему уравнений, полученную в п. 2.2.:

Первое уравнение считается основным, его мы не изменяем. Второе уравнение нужно преобразовать так, чтобы первый его коэффициент стал равен нулю. Для этого второе уравнение нужно умножить на такой множитель, чтобы первые коэффициенты первого и второго уравнения стали равны.

Найдём множитель:

μ21 = а21 / а11 = 22.968 / 32.5094 = 0.7065

Умножим на него первое уравнение:

32.5094a * 0.7065 + 22.968b * 0.7065 + 16.94 * 0.7065 = 40.83941 * 0.7065

Получим:

22.968a + 16.2269b + 11.9681c = 28.853043

Теперь нужно это уравнение почленно вычесть из второго:

0a + 0.7131b + 1.2319c = 2.266929

Аналогично преобразуем третье уравнение:

i31 = a31 / a11 = 16.94 / 32.5094 = 0.5211

32.5094a * 0.5211 + 22.968b * 0.5211 + 16.94c * 0.5211 = 40.83941 * 0.5211

16.94a + 11.9686b + 8.8274c = 21.281416

Вычтем это уравнение из третьего, получим:

0a +1.2314b + 2.1726c = 4.042284

Таким образом, получится система, эквивалентная исходной:

32.5094a + 22.968b + 16.94c = 40.83941

0.7131b + 1.2319c = 2.266929

1.2314b + 2.1726c = 4.042284

Третье уравнение нужно преобразовать так, чтобы второй его коэффициент стал равен нулю. Найдём множитель:

μ32 = a32 / a22 = 1.2314 / 0.7131 = 1.7268

Умножим второе уравнение на него:

0.7131b * 1.7268 + 1.2319c * 1.7268 = 2.266929 * 1.7268

1.2314b + 2.1272c = 3.914533

Вычтем получившееся уравнение из третьего:

0b + 0.0454c = 0.127751

Получим треугольную матрицу, эквивалентную исходной:

32.5094a + 22.968b + 16.94c = 40.83941

0.7131b + 1.2319c = 2.266929

0.0454c = 0.127751

Теперь найдём коэффициенты:

c = 0.127751 / 0.0454 = 2.813899

b = (2.266929 - 1.2319 * 2.813899) / 0.7131 = - 1.682111

a = (40.83941 - 16.94 * 2.813899 - 22.968 * (- 1.682111) ) / 32.5094 = 0.978384

Проверим результаты вычислений, подставив полученные значения корней в исходную систему:

32.5094 * 0.978384 + 22.968 * (- 1.682111) + 16.94 * 2.813899 = 40.83941

22.968 * 0.978384 + 16.94 * (- 1.682111) + 13.2 * 2.813899 = 31.119972

16.94 * 0.978384 + 13.2 * (- 1.682111) + 11 * 2.813899 = 25.3237

40.8394 » 40.83941

31.12 » 31.119972

25.3228 » 25.3237

Таким образом, уравнение аппроксимирующей параболы имеет вид:

F (x) = 0.978384x2 - 1.682111x + 2.813899

4. НАХОЖДЕНИЕ ЗНАЧЕНИЙ АППРОКСИМИРУЮЩЕЙ ФУНКЦИИ

Найдём значения функции F(x) = 0.978384 x2 - 1.682111 x + 2.813899

на интервале [0.7; 1.7] с шагом h=0.1

x0 = 0.7

F( x0 ) = 0.978384 * 0.72 - 1.682111 * 0.7 + 2.813899 = 2.118622

x1 = x0 + h = 0.7 + 0.1 = 0.8

F( x1 ) = 0.978384 * 0.82 - 1.682111 * 0.8 + 2.813899 = 2.095734

x2 = 0.8 + 0.1 = 0.9

F( x2 ) = 0.978384 * 0.92 - 1.682111 * 0.9 + 2.813899 = 2.092711

x3 = 0.9 + 0.1 = 1.0

F( x3 ) = 0.978384 * 1.02 - 1.682111 * 1.0 + 2.813899 = 2.109553

x4 = 1.0 + 0.1 = 1.1

F( x4 ) = 0.978384 * 1.12 - 1.682111 * 1.1 + 2.813899 = 2.14626

x5 = 1.1 + 0.1 = 1.2

F( x5 ) = 0.978384 * 1.22 - 1.682111 * 1.2 + 2.813899 = 2.202831

x6 = 1.2 + 0.1 = 1.3

F( x6 ) = 0.978384 * 1.32 -1.682111 * 1.3 + 2.813899 = 2.279266

x7 = 1.3 + 0.1 = 1.4

F( x7 ) = 0.978384 * 1.42 - 1.682111 * 1.4 + 2.813899 = 2.375567

x8 = 1.4 + 0.1 = 1.5

F( x8 ) = 0.978384 * 1.52 - 1.682111 * 1.5 + 2.813899 = 2.491732

x9 = 1.5 + 0.1 = 1.6

F( x9 ) = 0.978384 * 1.62 - 1.682111 * 1.6 + 2.813899 = 2.627762

x10 = 1.6 + 0.1 = 1.7

F( x10 ) = 0.978384 * 1.72 - 1.682111 * 1.7 + 2.813899= 2.783656


Информация о работе «Решение дифференциального уравнения с последующей аппроксимацией»
Раздел: Информатика, программирование
Количество знаков с пробелами: 18819
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
20490
0
0

... .   1.4.3 Метод Рунге-Кутта Этим методам посвящено много работ, и они хорошо изложены в много-численных учебниках (см., например, [2,3]). 2. Модели осциллирующих процессов в живой природе   2.1 Модель Лотки   2.1.1 Осциллирующие химические реакции В некоторых химических реакциях концентрации реагентов осциллируют в следующем смысле. Соединение каких-то начальных веществ приводит к их ...

Скачать
318063
13
95

... , при обработке металлов давлением. Экспериментальные исследования процессов пластической деформации металла в зоне формирования соединения при контактной точечной сварке по этой методике проводятся на натурных образцах с предварительно нанесенной координатной сеткой, технология изготовления которых предложена и описана в работе [128]. При исследованиях пластических деформаций в плоскостях ...

Скачать
100779
18
23

... (5.16) Непосредственное использование оценок погрешности (5.4), (5.8) и (5.12) неудобно, так как при этом требуется вычисление производных функции f(x). В вычислительной практике используются другие оценки. Вычтем из равенства (5.15) равенство (5.16): Ih/2 – Ih » Chk(2k – 1). (5.17) Учитывая приближенное равенство (5.16), получим следующее приближенное ...

Скачать
59485
4
20

... на первой  и последующих  итерациях равна: ; (3.22) . (3.23) Критерием завершения итерационного процесса является условие: ,(3.24) где  - заданная точность расчета [4]. 4. Методы оценки термонапряженного состояния 4.1 Физические основы возникновения термических напряжений При изменении температуры происходит объемное расширение или сжатие твердого тела. Неравномерный нагрев ...

0 комментариев


Наверх